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FIELD OF A POINT-SQURCE O RADTATION

IN A _STRATIFIED TNHOMOQENTEOUS MEDIUM

L. M, Brekhovskikh

I. INTEGRAL FORM OF SOLUTION
Introductlon

The suthor (1,2), and the author in collaboration with P,
A. Ryaziln (3), have previously considered the propagation of sound
waves and of electro-magnetic waves in strata bounded by a plane,
mubually perallel, with medla interfaces, We propose hersinafter
to generalize the results obtained by considering wave propaga-
tlon In a stratum bounded not only by "sharp" but also by 'eroded"

(for an elucidation of terms see Section 1), boundary surfaces,

We hope that tbis generalization will be found useful in
connection ﬁith such problems as evaluation of the influence of
the lonosphers upon propagatilon of radio waves, and also in the
study of sound propagation in the atmosphers and in the sea. In
the latter case the groded boundaries may be the bottom of the
sea In the "strata of a sudden change" (regions of large vertical

gradients of temperature and salinity).

The problem of propagation of electromagnetic waves in

plane-stratified wedia has been considered by G. A. Grinberg (4).

He has pointed out a method whereby the potential of the electro-

magnetble -fisld can be presented. in the form of quadratures.

The same problem has been studied by P, E, Krasnushkin., In
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his paper (5) he has polanted out a number of interesting condi-
tlons which obtaln in the course of propagatlon of the waves in

a plane-gtratified medium, and more partlcularly the fact that
the field in such a case displays partially or fully the nature
of a wavegulde, l.e., constitutes a discrete set of waves, under-
golng propagatlon at different veloclties., However, the discus-
slon presented by P. E, Krasnushkin is also of a very general na-
ture. Derivation of quantltative results is most arduous ex-
cept in a number of ildealized instances., Moreover, that portion
of the fleld which does not constitute a discrete set of waves

has been entirely omitted from his considerations,

We conduct the study of the field of a point source of
radiation in a plane-stratified medium under very general assump-
tions relative to the nature of the stratified medium, Thereby
the final results can be presented in a form adapted for use in
practical computations, as well as in a qualitative analysis of
the field structure. In the first part of the paper we present
the solution of the problem in the form of quadratures, In the
second part, this solution is studied in detail using the re-
sults of our previous work (6) concerned with wave refledtion

from plane-stratified media.

Section 1, Statement of the Problem

Consider a stratified-inhomogeneous medium, the parameters
of which depend on one-rectangular coordinate z. In the electro-
magnetic case, the parameter of ‘the medium is the dielectric cons-

tant € (z) (we are comsidering those cases wherein the magnetic

permeability can be‘assumed to be edual to one); in the acoustic

.
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cagse the paremeters will be the density of the medium P (z) and
gound veloclty ¢(z)., We assume that the medium satisfies the fol-

lowing prerequisites:

(a) When z = 1 @, the parameters of ‘the medium acqulre
constant values equal to &, 5 /2 )C, when z = — o0 , and €459 » &
when z = +¢o , lrrespectlve of whether the paremeters approach
these values asymptotically or becoms exactly equal to them star-

ting from some values of z.

(b) There is present a stratum bounded by planes z = %1
and z = zp, the medium enclosed therein being considered as homo~
geneous; within this stratum are enclosed the source of radiation
(coordinate z,) and the receiver (coordinate z). Thickness of the
homogeneous gtratum we denote by ho (ho = 22 - z1) , ‘the values of

the pafameters within it by €0 0 /S &y

Properties of the medium at an arbitrary point of space
shall be characterized also by the index of refraction n with res-
pect to the medium within the homogeneous stratum 29 L 2 < Zn. In

the electromagnetic case n(z) = —g—(-})- , and correspondingly
O -

=y &4 = f.?;_m In the acousti e, n(z) - d
nl_\)E;,.,nz— = ac smcgs,n -@ and,

So

L. No = e,
2, > 2 2o

consequently, ny =
Under the conditions indicated abovd we have a problem per-
taining to propagation of waves in a homogeneous stratum zj zg% < Zy

bounded below and above by two gtratified inhomogeneous half-spaces.

The latter were designated hereinbefore as "eroded" boundaries.

We will use a cylindrical system of coordinates r, z, (P

(Figure 1) (Figure 1 represents the picture within plane fP = 0).

" RO B
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At point O on sxls 2 is located the sauréa of radiation, at point
P (r, 3, 0), the recelver. We will assume the source to be &
_vertieal dipole in the electromagnetlc cass, and a pulsating
gphere of infinitely small radius in the acoustic case. In both
cases the field of padiation can be defined by a single gcalar
function Y (r, z) which with an aceuracy up to & constant factor

s the vertical component of Hertz vector in the electromagnetic

case, and the acoustic potential in the acoustic case. On con-

vergence of the receiver towards the source (R— 0, Figure 1),
E,_:.KDT'\

function | must degeneratig into a spheric wave ET wherein

k, is the wave number for the homogeneous stratun, We are omit-

—Cet

ting throughout the factor e

\

Figure 1. Diagram of location of source of radiation and receiver
in a cylindrical system of coordinates (r, z,P ) in the case of the
problem involving propagabion of waves within a homogeneous layer

bounded by planes z = 27 and z = %o In the drawing the origin of

coordinates is located Bn the lower boundary of the layer so that

z1=0

ST b

sessans

Section 2. Integral Form of the Solution

Let us utilize the well-known resolution of a wave, emit--

ted from a point source, into plane waves. Using rectangular co-

ordinates x =r cos ¢ , ¥ =T sin ¢, %, this representation can

be written in the form (see for example /7/, page 138, and also /8/.

The expression (1) aiffers from those found in the literature sole-
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1y in the use of angles of glide & , in lieu of incident angles
=7 76 )

.no R  _iKe gg ;;< [ Cordotl r.oa.-zf)ﬁ Y Lo, o) £(3-30) w2 )
-M”i;:”- R J. —\0 (1)
The expression within the sign of integration represents
a plane wave, the normal to the front of which has the direction
cogines cos Ol cos 4, cos W sin 50/, sinx , ol being the angle of
slide formed by the normal to the front of the wave with the planes
7 = const. Integration with respect totﬁ 1s effected from O to 2T,
and forq -—- along pa‘bh—] within the complex plane (Figure 2).
The necessity of resorting to complex angles in the integration
is due to the impossibili‘by of obtaining a wave with the required

characteristics when R = 0 by means of guperposing plane waves

having only real direction cosines.

Figure 2. Integration paths and  in the complex plane

o =0, +LU§.\V

Tn the exponent within the integration sign, the sign "+"

is used when 2z 7 Zgy OF the sign "-" when z & Zo- This is conso-

nant with the fact that when z » Zo bhere are present only plane
waves which propagate in the direction of the positive z, whereas
when z < 2o the waves are propagated only in the direction of nega-

tive z.

\on (=)
Utilizing the equabion % toa +«‘3/,uiw<p nf'rand inte-

gral form of the Bessel function, (1) can be written as:
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e-z v Ko (;-«"i ‘h »d,ww(fJ‘o Qk.g e Q’:) ﬁM,.Uf.A ‘X.
o (2)

ST 0
‘ Herein the path of intpgratiop~P : extending from 'ﬁ?c )
Ctmyr a6.<~'he-.~n; Q.“v'n.livi Ml,l,fﬁ‘;_ 5::;2'“, ._Q:M:_:_':") el Aip L Dt A e '}lew TT'_'_-_-_L&{;
through point Q’:.-Z—l s %o lge (Figure 2), the Béssgel function

within the sign of integration being replaced by Hankel function,
This transformation is effected, for example in /7/ (page 123),
with the sole difference that in the reference cited & is replaced

by the variable § — oCet-®  with the limits of integration T o

As a result we have in addition to (1) and (2) a third ex-
pression fo; the spherical wave:

lﬁK’r\> ! ke R ol 4_ -
e :m AT e("(::\.n,l., LY W@HCA LKﬁ,ch;,;qN.\”{)%ﬁ.da\
R i ® 0 - (3)
¢

Weyl, in his well-known paper /8/, caleulates in the fol-
lowing manner the field of a vertical dipole located above the
partition boundary of two media. Hertz vector, or more precisely
its vdrtical component, is given at any point by the sum of the
Hertz vector of direct wave /one of the expressions (1) -~ (3)/
and the Hertz vector of the reflected wave. The phase of the di-

rect wave at point (x, y, z) is (see (1)/:

and, as can be readily ascertained, the phase of the reflected

wave is,

anwmdwm§+$wm&h%&@icz-zgdgvfg

- -
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Here z = 2, 18 preceded by only a single sign, since re-
flected waves always undergo propagatlon in the direction of posl-

tive 2,

A complete expression for the Hertz vector %’ is obtained
on multiplying the smplitude of the reflected wave by the coef-
ficient of reflection, adding the product so obtained to the

direct wave and integrating the sum along all direction coslnes

of plane waves. We have as a result
AT, o
“[sthCﬂdaw&cyb¢+3QWAL4~~¢) ><
7o

TL R (et emins & V& Lo (242 ) am’ ¥4 BB (4)

whereing V( ¢ ) is the reflection coefficient of Fresnel /see (11)
below/.

On generalizing the considerations which lead to formula
(4), an expression can be obtained for the Hertz vector end the
acoustic potential in the case of the source of radiation located

within the stratum.

In this case at the podnt of reception we have in addition
to the direct wave, an infinite series of waves with a different
mumber of reflections from the boundaries of the stratum (as this
ocours, for example, in the case of a candle placed between two
mirrors). The phase of each of these waves at the point of re-

ception is given by the expression:

Ko (o tontl i # 4ot & i § + 43 #)
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where A= %yt 7 for the wave reflected once from the lower
boundary,Alt'uha“i.*V«Dfor the wave reflected once from the upper
boundary, & = 2hy -t for the wave reflected firet from
the upper, and then from the lower boundary of the partitlon, and

so forth.

Figure 3. Diasgrammatic drawing for the phase determination of
the wave in the case of a varying number of reflections from the
boundaries of the layer., Here are depicted four cases correspon-
ding to the waves with the least number of reflections from the

boundaries

For the determination of 4 for a different number of re-
flections from the boundaries, it is convenient to utilize the
diagrammatic drawing shownbin Figure 3, for the direct wave, and
the first three waves having the least number of reflections,
Herein the value. is equal to the sum of the vertical portions
of the broken lines joining points O and O'. (The location of
points O' and O in figures 3 and 4 /see below/ is chosen for con-
venience of diagramming and does not coincide with the actual lo-

cation.

The total field is obtained on summation of all plane waves
having the same direction cosines but differing in the number of
reflections from the boundaries, and integrating this sum along

all direction cosines. The coefficients of reflection of plane

waves from lower and upper boundaries are denoted respectively by
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Vy =Vy (X ) and Vg = Va (¥ ). In the determination of, for
example, V1 (& ), one should visualize the space z< O as being
supplemented above by & homogeneous half-space having the same
properties es those of the medium within the stratum, and that in
this half-space is present the given incident plane wave. As &

result, on introducing the denotation

b o DK e O (5)

we have the complete expression for the Hertz vector on the acous-~

tic potential LU

“dw«wWMmﬁ’*%u¢m¢L%¢”) x

by =L L)

\/ @ EANE e
T Ve

T

A

2 ot
. -2 / N Ty ; ’
) gblatort uﬂ KWWYl o ndrad;

wherein for the sake of definiteness we have taken the case 2 <:Zo'

The four case shown in Figure 3 corresfbond here to the

o

term of the sum with f = 0,

In the last expression, the same as in passing from expres-
sion (1) to expression (3), integration can be effected with res-
pect to @ and the integral along path 77 be transformed into an
integral along-7w . If in addition we take into account the equali-

ty

; -z - T
@»4(-1* c;“'i':) ’j"\/: ‘f—‘b C‘L”)f?) '}'\/\_eb(:\/h 0" 2 J‘"\/) \/ & 0 {‘b —

i

selbifsh
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and the velue of the sum of series:
ya |
L (LYt o
..Q:';(;( b '”“VT\A}.L "o

e ) ' o by %
P e Ger e TTT y

€™ (1 V) V€27

(7)
>/ ) W . ,
\ /’Ti} (u Ko 1 tag (L ) T, 0 ei s
In the case when z:> 25, \! is obtained from (7) by inter

changing z and zg.

Thus the Hertz vector or the acoustic potential is found
to be given in the form of an integral, with the function within
the sign of integration containing the reflection coefficients of
plane waves from boundaries of the stratum, These coefficients are
well known in many instances (for example in the case of partition
boundary of two homogeneous media, for a plate of finite thickness,

and so forth), or can be calculated.

Tn those instances when the exact expression of the reflec-
tion coefficient cannot be obtained, use can be made of the results
of our prior work /6/, whereing the refledtion coeeficient in an
arbitrary case is determined by means of the method of successive

approximations.

Tt is not difficult to see that the expression (7) satis~
fies the wave equationng)+K;qygg; The proof that it also satis-
fies boundary conditions and exhibits the necessary characteristic

when R = 0, we give in the éupplement. There ‘also is shown that




\
\ v
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the integral (7) converges.

Tn the seledtion of stratum boundaries zj and zp we are
1imited only by the condition thet the medium within this stre-
tum must be sufficiently homogeneous, Otherwise the selectlon of
boundaries is arbitrary. This however does not lead to any in-

definiteness in the value of ¥ .

(Footnote: We are considering the stratum 2} £ 2 £ )

as being sufficiently homogeneous if on passage through the stra-
tum of a plane wave, the amplitude of the reflected wave genera-
ted in the course of passage will be sufficlently small in compari-
son with amplitudes of waves reflected from the half-spaces boun-
ding the stratum, Phase advance must also not differ substantial-
1y from phase advance in a homogenecus space. In such a case on
displacement, for example, of the upper boundary downwards by

ér , V2( & ) will change,and the alteration of its value differs

—LLK o e W
from the initial value by the additional phase factor &

This follows directly from the definition of Vz( « ) as the ratio
of the Hertz vector, or of acoustic potential, at a given point z,
in the reflected and the incident waves. For details on charac-
teristics of V(o ), see /6/. On such displacement of the boun-
dary h, decreases by § . Tt can be readily ascertained that as

a result the expression (7) for ¥ remains the same;

If the source and receiver are located along the same hori-

zontal, then on selecting as the origin of the coordinate system

the pSint of location of the source of radiation, we have z = zq =0;
L. . :

Thickness of the stratum can also be selected as bing equal to zero.

As a result we have from (7):
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This formila can also be used in those cases of plane~
stratified media when a homogeneous stratum of finite thickness
cannot be segregated. In such instances formula (8) can be sub-
stantiated in the following manner. The true dependence of the
parameters of the medlum upon the coordinate z, we replace men-
tally, by a certain imaginary dependence, approximating as much
possible the true dependence, but also permitting segregation of
a homogeneous layer having a thickness hp. The field in this arti-
ficially created homogeneous stratum will be set forth by formula
(7). Effecting théreafter the limit transition hg —=> O, we com-
bine the imaginary dependence with the actual,and in so doing for-
mla (7) becomes formula (8). At the same time Vy in (8) must
be considered as being the coefficient of reflection from the half-
space z € 0, visualizing this half-space as being supplemented
by a homogeneous half-space disposed above it and having the

same parameters as the medium with z = O.

Section 3. Individual Forms of Solution

Let us consider the expression (7) for a number of indivi-

dual cases.

(a) When Vp = V = 0, we obtain from (7), as expected, the
expression (3) for the Herts vector or the acoustic potential of

the sources of radiation located in a limitless homogéneous space.
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(b) Let Vy #0, V2= 0. Then from (7) end sn analogous

formula for z 7 %o We have:
ik, (v tbCT-? . bC"’-—*"’v‘-ow ¢
Ve "f S\E E)‘}"\‘/I & -~ X

T (9)
>< Hﬂou (.‘Kd Rz Cf) o W d o

(the sign "" being used when 277 Zo, and the sign "-" when 2 Z\zo)l
Tn this instance the upper boundary is absent, end the source of

radiation and receiver are both within a homogeneous half-space.

Formila (9) will be obtained, of course, also from (4) if
this is integrated with respect to cs')' and the integral along T is

transformed into an integral along T".

On the basis of expression (9) problems can be solvedwhich
are analogous to the problem of Sommerfeld bub differing from it
in that the source of radiation and receiver are located above
the boundary underneath which the medium can display an arbitrary
stratified nature. Thus, the extimate of the effect of a snow
gover on propagabtion of radio waves along the earth's surface, by
using formula (9) is reduced to an estimate of its effect upon the

reflections coefficient of plane waves.

(¢) Let the lower half-space be homogeneous the same as
the upper one, and be separated therefrom by a sharp partition
pboundary. Then we have in the acoustic case:

R

. .
- (_o/,]_.'v ch
e

ed in Part - Sanil 0 y C
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and in the electromagnetlc case (see /%/ pege g0)

Sa——————

e
e
e

st e £

s

s rm—————

e o A e = o
If the source of radiation 1s located on the partition

boundary, then assuming in (9) 2o = 0, and taking into account

(11), we have in the glectromagnetic case:

"\ N - . '
5ed o Pmin, (_7]’ .'T,ﬁ\/ M’T o %1_/‘ )

Ry

Taking into account that ™, = g7 and passing to a

o
new integration veriable Eg - Ry , we obtain from (12) the
well-known formula of Sommerfeld (see /7/, page 123):

[}

etanmee

Ve o

F*"’“\i?a”'“t Hom (eNE4E

R Al

(d) If we take for Vol & ) expressions analogous to (10)
and (11), when we have from (7) the previously considered instance
of wave propagation in a stratum bounded by two homogeneous half-

spaces.

Sugplement

Let us prove that the expression (7) for Hertz vector or

the acoustic potential satisfies the corresponding boundary con-
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ditions and possesses the required cheracteristic at the point

z = %g, T =0,

Consider the boundary conditions at the lower boundery,
asguming z1 = 0. First of all, we obtain the expression for
the Hertz vector with z ¢ 0, denoting it by Wﬁ . In so doing,
we proceed in the seme manner as for QJ , i.0., we resolve the
spherical wave into plane waves and summate the successive reflec-
tions of each of thé plene waves, Figure 4 shows diagrammatical-
1y the four simplest ways whereby the plane wave can reach from
the source of radiation an arbitrary point O' within the lower
medium. Let us consider first one of the plane waves into which
is resolved a spherical wave (See /1/). Let the plane wave, on

its direct passage from ) to O' (Figure 4, &), form at O' the field,
5 7/,_4 /: M ﬁ, 0 ( o e K L L‘.@’ Yy oo ¢ At ?’Q 0 e SR )(2] ]L ( T, VO ]

We are not concerned with the form of function £, which determines
the nature of the inhomogeneous medium when z < O, The field
formed by the wave on a single reflection from the upper boundary

(Figure 4, b) will be obviously:

. , , " . ’ 7 ‘]
vL-FZ”JJ é C g | etonh Lo Py ot P 3 Ghy=To) A A) 3\/“’ (QL)%VJ G @)

/\/&‘ince the entire difference from that of the first case
consists solely in the fact that the plane wave has previously
travelled over a longer path within the stratum and has been re-

flected once from the upper boundary.
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Declassified in Part - Sanitized C
IA-RDP82-00039R000200120005

Figure 4. Diagrammatic drawing for the determination of phases

of individual waves constituting the total field in the lower
half-gpace, The same as in Figure 3, four cases are represented
here corresponding to waves with the least number of reflections
from the boundaries of the stratum: (a) direct passage of plane
wave from point O to point O'; (b) one reflection from upper boun-~
dary on passage from 0 to 0'; (c) one reflection from upper boun-

dary; (d) two reflections from upper boundary and one from the lower.

In an analogous manner are obtained the fields formed by
waves having had a greater number of reflections (See Figure 4,
¢ and d). On summating them and integrating over angles X and

/
¢, we haves
.77

! 67 oy e hoedinm b ‘
W, = tRe. o' o (reen %t 1 -y o A "*‘) )(
%1 :

%
e Ty £ Q.bh
(S [etre T oy X

N
X // (2, o) con K 7% N

The four waves represented diagremmatically in Figure 4

correspond to instances when a{ = 0 and /@ = 1.

In the same manner as in the case of #3 (See Section 2), the

last giﬁen expression is reduced to the form:

i i
i G
|IA-RDP82-00039R000200120005-2
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Boundary conditions require that with z = 0

)y )
sv . 20y 2w,

- D 2 Be. r"ac’

In the electx;omagnetic case% must be replaced by
In this ingtance K—%and k! are the density and wave number in ‘the
1ower medium in the immediate vieinity of the boundary. If the
properties of the medium or passage through the boundary change

/

ontinuously, then —5— .
¢ s /? K ’

Substituting the expressions (7) and (1) in (II) and equal-

izing the expressions within the sign of integration we obtain

two equationss

. ™ . S
CKy A W \./: IR } =

/9’

| -r\/ (V\) = /3 C('f?) WKI}’

The same equabions are obtained on considering the prob-
lem of reflection of & plane wave. They are naturally satisfied

1f the proper value is given to the reflection coefficiants Vol ).

Let us now demonstrate that the integral (7) converges

i
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everywhers except at point % = Zg, T = 0, where it hag the same
characteristic as that of the ppheric wave (3), In doing thie we
met study Vi( ) end Vo( A ) within the complex plane A=K+ Ly
for which purpose we Will atilize the results of our prior work /6/+
Tt wes shown there thet the reflection coefficient Vi( &) cen be

written in the following form:

i anmsninrnt

i () =Y ey R

where functlon u(z) is determined from the equation:

PRI
s 1B

9
i “
e

/

X Al () Lot

Py .
f")"v." oo betaehe o

for boundary condition z = = Ut

In the case of complex N [ . ) the sign of the root
L) obetiare

nust be chosen from the condition (Heve, unlike in /6/, the engle
of slide of the indident wave was foundto be more conveniently de-
noted by o , and not by O(q.. Moreover, since the time factor is

- Lot ;
used here in the form & % and not a('“‘m,

in contradistinction
with /6/ + i appears sn all the formules in lieu of ——i.) This is
necessary in order to have with z=3 — (=, 8 damping wave (Imx de~

notes the imaginary portion of X )_"f::.‘ n
Qo T B 70 W)

In the electromagnetic case m-/of . cannot be replaced by

AR, e o
/‘O | . i :*'mmli ;. ’

ny, and
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On remote sectors of the path of integration (Figure 2),
taking into account that Ceq.df = Ceds &) Ao R T | Shed., e
. ! [ + ' (fl . .
© S W e ’C\/'f»ﬁ.%.\«"k L ﬁéﬁtlﬁ\,sfv};\é v;'-fj_l have )Ccfv\'.).- ‘5\/ Lo ')a*aﬁf.w-\.‘ c\'\ - 7Y,

oo s s e 4

In addition, taling into account the condition (V) we have \/m‘lb,.gﬂ,“c-{ —

B Gt « As a result, equations (III) and (IV) assume
the following limit form:

-~ .
,,,?3~../ w '”.’,..«‘\) o]
¢ )

":“Q'MT g ]
20 () (Ivr)

/ A (,\//.,«:} ¢ , from the last equation we have (i () =

. This solution also satisfies the boundary condition.,
Further, on assuming z = 71, we have U (_L,) - ';;’)m , and in accor-
dance with (III'), V3 = 0,° :

In some cases it is necessary to know the nature of the
tendency of Vi toward zero. For these cases, utilizing the re-
sult obtained for u(z) as a first approximation and éubstituting
it into the left hand portion of (IV'), we have the second approx-

imation for u(z). On substituting it into (IV!) we heve

B e
Vet (1ae
YK Ao K L el
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The results obtained relate to the case wherein the den-
gity of the medium (refraction index in the electromagnetic in-
stance) ls changing continuously. If, however, the change seems
to occur suddenly, then formula (10) gives, on Limiting trensitlon

/ e, / ‘ N

ey

\// ( G’Q - .iij:.'...-««..w

4

“)

where 75" is the ratlo of densitles on either side of the boun-
o

dary.

Thus in all instences Vl( % ) tends toward zero or & finite
value. An analogous result takes place for V2( ), Taeking this
into account, as well as the fact that the real portion of b is
‘nega'bive, the expression within the sign of integration in (7) can
be written, for remote portions of path f} , in the following
form (with z & zo):

e Y A % ’/ 7[(‘3 \\ K, A~ o h) Coona A,

[}

which coincides with the function within the integration sign in
expression (3) of the spherical wave. Using the asymptotic repre-
sentation of the Hankel function and introducing & new variable

E:j = K, ot , integration with respect to which is effected
along the real axis from = W k¢ -t 5 Ve have, with an accuracy
within the constant factor:
Tt is apparent therefrom that when the limite of integration tend

towardst Ge 5 we will always have a converging integral with the

exception of point z = Zo, T = 0. At this point the integral will

7 204-
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diverge in the same Way a8 the integral (3) of a spherical wave.
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TT. DISCUSSION OF THE SOLUTION

Tn the firet part of the paper /L/ the author has proposed
a new method for the solution of the problem pertaining to the field

of a point source of rediation in a stratified-inhomogenecus medium,

Tn this method the spherical wave radiated by the point source is

resolved into plene waves, after which the behavior of each of

these plane waves ls analyzed geparately, It is not difficult

to see the very close analogy between this method and methods of
golving diffraction problems. In the latter instance the incident
wave is usually resolved into waves having the same symgetry as

that of the body upon which diffraction takes place. 'g;;fthe prob-
lem under consideration herein the plane waves fully correspond,

from the standpoint of symmetry, to the plane stratified medium

within which the field is being studied.

In the first part we have obtained the solution in an in-
tegral form. In the present, second part, we will make an analy-
gis of the integrals obtained and will show that the method pro-
posed by us makes it possible substantially to advance in the so-
Jutions of the problem and to present results in a form adapted
to computation. In hitherto published papers, as pointed out in
/1/, the suthors have confined themselves to a presentation of
results in a general form, completing the computations only for a

number of highly idealized specific instances.

Section 1. Study of the Basic Integral

Resolution of a spherical wave into plane waves includes,

as is known (See /1/), in addition to the usual plane waves, the

i A s
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so-called inhomegeneous waves, The latter permit the same formal
mathematlcal description ag the usual plane waves, and only the
inclination angles must be considered as belng complex, As & re-
sult, the spherical wave is represented in the form of an integral
by plane waves in which Integration is effected within the complex
plane of the angles. An analogous integral represents also the
total field within the plane-stratified medium, In the first part
of the paper we have obtained such an expression for the acoustic
potential in the case of acoustice, and for the vertical component

of the Hertz vector, in electrodynamics (Formula (7)):

. %
v=(3@4 Ly nent) conndn,
4

&
wherin

LAY
P

b (..Il'?g*".

_(: e }"L,,’-.. \4 & b"’:) (’ e E(ho %) ,..}...'\,/G/L‘_E.

b . B )
LI (EVAVA & 7“) (2)

It is here éssumed that source of radiation and receiver
are located within a homogeneous stratum of thickness h, bounded

below and above by arbitrarily stratified media.

In expression (2) the following denotations are used:
Vy = V(& ) and Vy = Vo( W ) are coefficients of reflection of
plane waves as a function of the angle of sliding « , Xrom
lower and upper media, respectively, which media bound the stratum;
%o and z, respectively, the distance of the source of radiation and

the receiver from the lower boundary of the stratum; r is the hori-

ed in Part - Sanitized Copy Approved for Release 2012/04/26 : CIA-RDP82-00039R000200120005-2
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zontal dlstance between the source of radiation and the receiver;

and finally

b o= b r"i,:7 e B 5 (3)

ko being the wave number in the medium which constitutes the stra-

tum,

Expression (2) relates to the instance when z < z,. Tran-
sition to the case when z> 2y 18 effected by replacing z by z, and

vice versa,

Path T: , along which integration is effected in (1) is
located within the complex plane of angles « =, 9{, e L Ty
and extends from {{ = TT - ¢ e to QL wTT- 'LL,fJ, then along
the real axis to ¥ =77 , and finally along the imaginary axis
to X =0 (Figure 1), Integral along path77 can be re-

placed by the sum of integrals along T’pand 7-; , use of which will

be made hereinafter.

Figure 1. Paths of integration T, T, T!, and T, in the con-

plex plane o = (A, + L X

Let us analyze integral (1) first for the instance when
np # 1, ny # 1, denoting by n; and n,, the seme as in /1/, the re-
fraction indexes of the medium for z = - C° and z = + ¥, respec-
tively. The index of refraction of the medium within the homoge-

neous stratum is assumed to be the equal to unity,

" "Declassified in Part - Sanitized Gopy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120005.2




Tn the instance under consideration, the integral along .Dl__'
18 identiocally equal to zero ainee the function within the inte~
gration sign in (1) is odd with respect to o . (This can be
readily shown by taking into aceount that according to formulas
(1I1) end (IV), in the supplement of /1/, we have Vi (- & ) =
= \/,)(C\’j , and analogously, Vz(— o) =-*\7E“Z‘C{) .

As a resull, there merely remains to determine the integral
(1) along the path 7; . Let us extend path -rb into the negative~
imaginary infinity so that 1t will become an infinitely remote
path 1; (Figure 1). By a method analogous to that used in the
supplement of /1/ it can be shown that the integral along path
is equal to zero, As a result, the path of integration becomes
nguspended" on specific points of the expression within the sign of

integration, and the integral is transformed into the form:

e NN O '.‘
g = T %_?\ ae O (VA (k rcandl Y +
Al
.,l“.

- u)
a_) QOQ /L/o C_Ko /L Cor. (7(‘) Lose X AN

I lee

Yo "

P, A ' "
[T B g toaet) com 1K

e
e

Here the first term constitutes a sum of substractions of the ex-
pression within the sign of integration, at poles located within
the regions included on deformation of the path. In Figure 2

these poles are denoted by Pyy Py eee Their location is deter-

mined by roots of equation

)V () V() @ Ko o #mk
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The last two terms of (L) are integrals along edges of sections
starting at points M = arc cos np and W = arc cos ny, (4

and A2 in Figure 2) and extending respectively .along lines
»mvfowmw\MaMQMV$rt@vﬁ =4 , The apparition
of these integrals 1s due to the fact that functions Vi(of ) and
Va( ¥ ), and hence also function ¢ (%), are not simple. Indeed,
they compose roots J::jwu::‘ N o~ ‘.;jag,m_ (see (V) in Sup-
lement of /1/), and the sign of each of them can be selected in
two different ways. Thus we have four sign combinations (++, +-,

~t, =~), l.e., the functions within the sign of integration will

have four values. It can be made to have a single value on a

four-laminar Riemann surface., Integration paths Tf s 7, and
Rren

- —:
1; » are located on that one of thﬁsslaminas (we will call it

s,

%wwﬂwmﬁmfmwdxq:2§1>o mdxmvymmm,y 0O
(See formula (V) in /1/). Path T, will be located on the same
lamina only in that iﬁstance when we construct the gections of

the complex plane extending from branch points 4 and A, and cir-
cuit them on deformation of path of integration f; into Z? . If
this is not done, then path'T‘ will cross both sections and one

T e “}Q q"\ o .+ By the same token, it will not be con-

nected with the corresponding end of 7: , located in the upper la-
mina. As a result of this, on taking into account all these sin-

" gularities, we have the path of integration suspended upon poles

and sections, as is shown in Figure 2.

Using the terminology of P. Ye. Krasnushkin /2/, the field
represented by the first item of (4) can be designated a discrete

spectrum, and that represented by the remainder of (4), the con-
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tinuous spectrum, %4ﬂueua~apectrumlj

Figure 2. Pilcture in the complex plane o , obtained following

deformation of contour '72

Section 2. Lateral Waves

The last two integral terms of (4) represent lateral waves,
which in the case of ordinary partition boundaries have been sdu-

died in detail in previous papers /3, 4/,

Let us consider, for example, the first of these two inte-
grals, and designate it by Wy, Tt can be divided into two inte-

grals, one along each edge of the section:

A

A "
W, 1{ GLo)H 7(\KU Nt R) Cos A Y

&
0 R VA
e 4|
Sty

T e
o

A,
Herein </>[v£) and ¢+C0‘\> are values of the function at neigh-
boring points located respectively upon the right and left edge
of the section., As is known,on circuiting aboﬁt a branch point
the root sign acquires the opposite value (see, for instance, /5/,
Section 92); hence t’/Z"HCX(-) is obtained from ?)Cdu) by changing
the sign of this root. (In 0 CV&) , i.e., to the right of sectio
R@?; \[;;?_Mc:;:‘mc;m(ﬂ ¢ . In fact, at point A= ‘Tjt_ located also

to the right of the section n S gerd =N but R -~ .
’ / o 7 e. ]/O
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On changing the airection of integration in the first of
the two integrals to the opposite directlon, we can combine both
integrals into one, which coincides with the last integral of (6),
except that @ *(i) ie replaced by ('ﬁ ) -».I (f,t&) Utilizing the

value c]p ('o{ , and denoting by

’ haal o 3 -
.Kl — At G b Y \..' (7)

we have, on performing simple caleulations:

= YT
' b(h A bCheen) b(h .1_} &,oul,u)
BN (RAVECN I Ca ), ooy SOl T

C‘ ,,,w,o /\/. tbhux bhon____\/?* 4 e_bb)
(8)

A ‘?l'}‘g} (Kon ton W) o RIK,

wherein we obtaln V1+ from Vq by changing the sign of the root
\f:;{." T repiy .+ For further caleulations, assuming kor to be
large (exact criterion, see below, formulaes (19) and (20), we as-

sume

- , .
" \ Lt VN W L (_R D'/\‘ (_‘,4»'%_‘,.:-,. >
T ""““““:“:_f“\ &

TKO Moy B (9)

Now let us apply to integral (8) the method of fastest descent.

To do this we introduce in lieu of ¥ the new variable s,

in accofdance with the equation

et th ooy b ST .10)

~o8 =
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and we subject to deformation the path of integration so that 1t
extends from polnt Ay, for which s = 0, along & liné correspon-
ding to the real values of 8. (On deformation we may encounter
the poles of the expression within the sign of integration; we
will defer this problem to the subsequent paragreph,) Taking the
real terms of both sides of equation- (10), we obtain for this path

of integration within the complex plane :t)\ﬁéd\,k, the equation:

WW%ﬁAKhT"m}> (11)

while assuming nj to 5@ real (in the case when ny has an appre-
clable imaginary portion, the lateral waves are of no interest
since they are found to be rapidly attenuated in space). In Fi-
gure 3, a and b, this path is shown in solid lines for ny £ 1 and
ny :; 1, respectively. The dotted lines of these drawings show

the sections.

Figure 3. Solid lines: paths of integration following deforma-

tion in the instances where ny 1 (a) and ny 1 (b). Dotted

lines represent sections.

Substituting (10) and (9) in (8), we obtain within the sign

" 2
of integration the exponent e kors , with the integration being

now effected for real values of s from O to o .

Since kor is assumed to be large, the rapid decrease of the

above-mentioned exponent with increese of s, renders material within

CIA-RDP82-00039R000200120005
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the sign of integration, only smell values of s, not in excess

of the order of

)

S LA

S (12)
e T VT

Therefore, for an approximate determination of integral (8), the
expression within the sign of integration, with the exception of
exponent e~k°rs2 and the difference Vi - Vy*, GAN BE TAKEN OUT-
side the integration sign for the value of s = 0, The difference

vy - Vl when s = ) becomes zero, since“z} and Vli differ from
each other only in the sign of root\£:: ;:m;:; which is equal
to zero when s = O. By means of (10) it is not difficult to ob-
tain

~_~~—~‘-~ﬂ"\ SRR - LQ&
s &
\/:"\1 - w"’ O\ 4"“&:;:4 \/ o ol = e

We postulate

4 et sl LT lv\
e w M s
Vv, - VAR \f""*’v, ~ 09"

\\/ﬁ :

which corresponds to expanding this difference in a series by po-
wer of s and limiting it to the first power, Herein By is a cons-
tant quantity; the method of calculating the same will be indicated

hereinafter.

Taking further into account that
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We obtain from (8)
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The expression (16) does not change on replacing z by z,

and vice versa, and consequently it is useable for z<;‘zo as well as
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The lateral wave represented by expression

as in the case of &
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(16), the same

gherp partition boundaries,

undergoes propagation along the gtpratun with a8 volocity equal to

the propagation velocity within the lower medium,

large aistance from

ready be congidered &8 belng homogeneous,

tude which decreases

with distence &3 —%3, .

at & sufficiently

the stratum poundsry where the medium can al-

and possesses &n ampli~

Dependency of ampli-

tude upon z 18 more complex and displays & materially different

focus for my Tp 1 and M) <

sufficiently 1arge, we have,

within brackets in (16)

E}""l (= 4+ o\

e e

Tn perticuler for ny 1 and

on disregarding the second terms

YIKo"r\.]j\—

YAIGH

Tn thig instance the amplitude of the

lateral wave de-

creases exponentially with increasing distance from lower boun-

dary of the stratun (increasing z), i.e.)

gpread along the lower boundarye

Tn an analogous manner,

section will yield a leteral wave LY

tion along the

the upper medium,

by replacing index 1 by 2 and also hy

the integral along edges

the wave appears to

of second

which undergoes propaga-

gtratum at a velocity equal to the velocity within

This analytic expression is obtained from (16)

-z by 2, ho = %o by %o and

e e
7@, by €. ﬁ»\qo\/;w_f;m.) — L Kp ’w,w’ﬂ,% ,
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We note that in the case of real ky = npk, and ky = Roko,
when the amplitude of lateral waves decreases only aaj%; , ab
sufficiently large digtances from the source of radiation prac-
tically the entire field within the stratum will be determined by
the field of lateral weves. This is explained by the fact that,
as will be ghown nereinafter, waves of the dlscrete gpectrum are
exponentially attennuated on propagation along the stratum (with
the exception of some gpecific insbances), due to withdrewal of
energy from the stratum by way of leekage through boundaries.
Therefore at sufficiently large distances the amplitude of waves
of the discrete spectrum will be of any degree of smallness in
comparlson with amplitudes of lateral waves decreasing as 7%&/ .

The difference in laws of attennuation of waves of the dis-
crete spectrum and of the lateral waves can be clearly explained
in the following manner. Waves of the discrete spectrum on pro-
pagation in the stratum gradually decrease in amplitude due to
leakage of energy through walls of the stratum, Lateral waves
on the other hand at great distances are continuously supplied
with energy from the helf-spaces bounding the stratum, There may
exist instances, however, when the amplitude of the lateral wave
will be small in comparison with amplitudes of continuous spec-
tyum waves at any distances. This will take place for example
when reflection from stratum boundaries is complete and the ampli-

I
tude of discrete spectrum waves decreases only 8&s ;EE: , and also

in
if/the half-spaces- bounding the gtratum there occurs a sufficiently

large attennuation of the waves.

To substantiate the correctness of formula (16) it is neces-—
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gary to meet certaln conditions. In (L4) we disregarded g* and
g% in comparison with 1l- n%. Teking into account that expression
(12) gives the meximum values s which are gtill of meterail signi~
ficance, we have & condition at which such disregarding is pos-

giblet

kon] 1= o5 | S ‘ (19)

Further, in the analysis of integral (9), exponents of the
B(ho =

form e z) were teken outside the sign of integration for

the value s = O, This is permissible only in that case when these
exponents are slowly changing functions in comparison with the
exponential e—k@rs2 . This takes place if ho is sufficiently small

in comparison with r. A more precise criterion, the derivation

of which we will not consider, holds that
(20)

Coefficient By, which determines the amplitude of lateral
wave (16), can be resdily found from (13) if one knows the ana-
1ytic expression of the teflection coefficient V(¥ ). (See ex-
amples in Section Ly below.) In the arbitrary case, however, By
can be expressed through converging geries, Hereinafter, inthe

supplement, it is shown -that

P N & T g : ¥ ¥ B
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wherein, in the acoustle case

b A Mmoo T
)

kA
[ e ()
/00

;:’ = |+ A
—

E) - L ’\,\Q&nb +

kS

- oo
(o m W;*h) de

!

Here we have written only two terms of each Fl and El' The
further terms, of more complex form, can be obtained if necessary

by a procedure stated in the supplement.

In the electromagnetic case, formules (21) and (22) hold,

C 7,
but in lieu of—% — and ”;:;* , ‘there must be substituted
s ]

!
n?(z) and R o respectively. (The sign of roo’c.\}l - n%_ , which
| :
ig part of (21), must be chosen from condition Re\J 1 -n{ 0.
This follows from thé fact that the root is derived from equation
..—--.—-‘—"‘"‘“2 g s

(sint )g =0 7 (J1-1nT +8° Jg=o0 =Jl -ny e Whi_le func-
tion sin & taken at the branch point (which is the meaning of

¢ = 0) has a positive real portion.)

Tn an analogous manner ig obbained the expression forthe
quantity B2 which determines the amplitude of lateral wave, pro-
pagated above the stratum, only the index 1, in (21) and (22) is
replaced by 2, while integration with respect to z from -0 to 3,

is replaced by in'begration.frofn + & to 2.

In the case of arbitrary functbions n(z) and 7 (2) charac-

terizing the media bounding the stratum below and above, calculation

opy Approved for Release 2012/0: CIA-RDP82.00039R000200120005.2
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of By, Fy and Eq, Fa requires numericael integration,

So far we have considered the case ny # 1, np # L. Now
let ny = 1 but ny # L. In such a case )m‘/.. gﬁw‘;x)‘gﬁnd T (d),
unlike Va(gf ), will be a single value function of & , Branch
polnt Ay will be abgent. The continuous spectrum will be glven
first by the integral slong edges of the section extending from
branch point A, and secondly by integral along path T;_ of
Figure 1, which now will be different from zero (in the demonstra-
tion of the equality of this integral with zero, material use was
nade of the fact that nq # 1, ny # 1). Thé first of these will
yield the lateral wave studied above [expression (16) with index
1 belng replaced by index 2), while the second —- the lateral wave
induced by propagation in the half-space bounding the stratum from

below. We obtain the analytical expression of this last-named

wave. As the initlal expression we haves
B (;mf:,-
Lo d () /"7/(!} (K tosn ) G2 AT
W,oz-- ) ¢ "o o’V Lo ) (23)
0
Dividing this integral in two, from -ie® to 0 and from 0 to +i¢@ ,
and replacing in the first of themd¥ by — K , we obtain:
Lo
' I (1
L \p AT { . ,
\/\/I = = (P +¢ )/7‘0 C»Vomtovv()ﬁw«“‘:m)

©
wherein for brevity the denotation is used ¢ = ¢ ) and

F= § (-0,

Substituting therein expression (2) for jS( & , denoting

\// ("" QC)-:_\/, £ , and taking into account that \/‘1, - CQ :D-:Cé‘\)

039R000200120005
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(see remark on page 516) we have:

W, = _Re

blhe ”*7:) )

"

)

e (L

oD (hp=2y Q)
blhe M)(.Vx@”b 5 D+ e (Mo ’o)

0 ' =mhe L \/l \/-x,eb"ox\/m.‘“’ Mw"’“’\/? e« ‘

[Cn [ e N ‘
X T Kot toieth) Lo 0L <. .

This integral is caleulated analogously to integral (8),
the mos® essential region of the integration path being the re-
glon of small ]o.” . The entire expression within the sign of
integration, with the exception of the Hankel function which is
replaced by 1te asymptobic value, 1s expressed as a power series

in &4

Let us consider the coefficients of reflections Vl( o)
and Vz([)! ) at small values of o¢ . Later on in the supplement
it is shown that on disregarding small 0{3 , (w ) can be writ-

ten in the form:

LA e

Ck.> \/u/?v-}“w ey ’:f: I ‘ \/\ (.lx} = -t (25)

'E) V,f-/lrn,'\/"-a -’T"\-—} T |

whereing pp, cq, and d, ere constants.

The quantity Py ig as a rule complex:

I LA
p =T R
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Z. 1, and pij} D since

4t the sans Gine p| 7 O #iRCS \vl\
¢ advance on reflection

regents the weve phes

the value Zde Tep
oforth we Will use in

which is slways positive, Heno 1ieu of p; the t

’ velue by jntroduced in agcordance with th

Pl ko Ny (2) ; o

e equatlon:

The quantity hl can be congidered as being the effective l

thickness, equal o the thickness of a cer
sage ghrough which, forward end packward, the wave ac-

advence as on reflection from the lower

tain homogeneous gtra~-
|

tum on pas

quires the same phase
and dl are real

=1, quantities ¢y

£ the stratum. When By

boundary ©
s absent in the media

(1425‘) 1f absorpbion I

(n(z) is 8 yeal func-

stance 1s characterized by value

Phase advanée in that in

c1s and by analogy with (27) we postulate
. (28)

<, -::,.Ko‘f\]

tionj.

| Tn those cases when there is &n analytical expression for
function V]ﬁ A« ), coefficients are found by resolution of right
ortions of equation (25) into a series of o and liken-

of equel powers of o .

s a series analogous bo

and left p
Tn the general case

ing the coefficients
(22) (see

: Pys G0 and dy can be written &
¢ below, in Supplement) .
11y,

. (28) will obtain, nature

Formulas analogous to (25)

also for Vo(d ).

% ‘ Integral (24) relates 4o the instence M) = 1, ny # 1., Con-
1) for V, and the formula \4L -

sequently we gEmet uSe formula (25
-2
P, , analogous ©O (25), for Vs.

’Md(btvm Llcj Ofav
~ |

As a result we haves:

\/,\/?' = |-&

[l

_38 -
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At the same time P70 gince \Vl\'.’\ 1, and p!i? D since
the value Zde represents the wave phase advance on reflectlon
which is always positive. Henceforth we will use in 1ieu of p; the

value hl introduced in accordance with the equatlons

el .
P ko : (27

The quanbily hl can be considered &8 being the effective

thickness, equal to the thickness of a cerbain homogeneous gtra-

Lun on passage through which, forward and backward, the wave ac~

quires the same phase advance as on reflection from the lower
boundary of the stratum. When nq = 1, quantities ¢y and dq are real
(1425‘) 1f sbsorpbion 1S gbsent in the nedie (n(z) is @ yreal func-
tion). Phase advanée in that instance is characterized by value

e1s and by analogy with (27) we postulate
¢, = Ko M (28)

Tn those cases when ‘there is an analytical expression for
funcbion Vl( %), coefficients are found by resolution of right
and left portilons of equation (25) into 2 geries of ® and 1iken—
ing the coefficients of equal powers of ¥ . In the general case
Pys 12 and dp can Pe gritten as & series analogous to (22) (see

pelow, in Supplement).

Formulas analogous to (25) - (28) will obtain, naturally,

also for V2( o ).

: _ Tntegral (24) relates to the sngtance 0y = 1, 82 # 1. Con-

K‘: ..-w"’""‘"w? ) —

{ sequently e TagEmet 1S formula (251) for vy and the formula \AL =
! ~1p, G

i - F analogous to (25), for Vo, As result we have:

f Coud ol e
(.,\/i\/? - & 'D{'@LUIGL
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In an analogous manner are expanded in series in terms of
0" the other expressions within the sign of integration. Using

the asymptotlc value (9) of the Hankel functlion and taking into
{
account that ce 0l A2 )m-:%jw , we obtain an integral of the

form (15), which gives as final result :

. : l""; p I ¥ >
Pd o e ) (L b e | et L
W nidp Sﬁﬁ*h%"¢'+'Ym >Lha4'w. fo R T) i S0
T L - RN
K, N ( PO
o v

wherein h denotes the total effective thickness of the stratum,

(30)

As we can see, dependency of the amplitude of lateral wave

on 4 in this instance is of the same type as in the case of ny 71l

(see (16)); the dependency on z is, however, a different one,

In lieu of conditions (19) and (20) characterizing the usa-

bility of computation, we have here one condition, namely:

k=>b_ﬂa <<g:j J X
. (‘}{)
\% Ko/"
If not only ny =1 but also n, = 1, then in the complex
region ©f there will be not a single branch point. Whereas the
integral along the imaginary axis yields two lateral waves, of

which one is given by the expression:

Declassified in Part - Sanitized Copy Approved for Release 2012/04/26 : CIA-RDP82-00039R000200120005-2
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(_h et -'L)Ch L rhe 7-5:3 e)k., /\.)
h (29")

¢ C_ Ga
boohgthirhe s by == s A E
KO }ﬁo

while the other is obbained from it on replacing index 1 by 2,

hy - 2 by 2z, and ho - Zo by 2q.

Tt is also of interest to note the case when ny = Ny # 1.
Under this condition the integral along the imaginary exls vanishes,
and both latersl waves are obtained from the integral along the
edges of the single section, extending from branch point cosGl = ny.
The analytic expression for one of them coincides with (16), while
for the other it is obtained from (16) on performing the above-

indicated replacement.

Thus, two lateral waves are always present, One of them

is dependent on propagation in the lower half-space, and the other
in the upper. For the wave dependent, for example, on propagation
in the lower half-spacg we obbtain different analytical expressions
(16) and (20) depending on whether or not nj is equal to unity. The
case wherein nq 18 anywhere proximate to unity but distinct Fhere-
from, we cannot study in view of the necessity of meeting condi-

tion (19) ¥
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Section 3. Discrete Spectrum

As wes stated in Sectlon 1, the digcrete spectrum is glven

by the sum of differences of the expression within the sign of

integration in (1). Here we will gtudy it in the case where thilck-

nesg of the homogeneous stratun containing the source of radiation

and the receiver is large in comparison with the wave length.

d by roots of equation

Location of the poles is determine

i
i (5). Let us assume in this equation

. Lp ()

Vi(a) = -

wherein

o,() = — b A (- \/|> 5

and analogously for V2( d ). Then equation (5) can be written in

the form:
A b Kol g vt % oo b CP) 4 Pa)

= |

e

é-‘ X [ ‘HO wj,.;-,..«w c;\ e CP - T /6“

ﬂz'b.£¢\\<\/;, é

wherein{ is a whole number and @z @y

Let us congider first the case where,jzis large. Then dis-

% regarding ¢7 in comparison with(zrﬂﬂ we obtain from (33) in first

o approximation the following series of solutions:

) . ik (34)
Q = et s
A Kohp
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On substltubing this solutien into the small term.49 of

(33), we have in the next approximation, which will suffice:

Ny
" .
Qm BAL A T f_&g) St A Ak 71..@.,,. o
Hp h& AN, }1 Pt : -
i ° Ko ho

O

. i\ QMO ( )
RN, ?

N TR b oy — ()"
As will be shown hereinafter, atte@uation of each wave of
the discrete spectrum will be determined by the imaginary portion

of the corresponding root of O(/(i . Using the denota‘oi'on
Ag =Ty (36)

we have from (35)

14 being assumed that 7L < Arphy

The solution method utilized is not suitable for small

values ofjf, which in accordance with (34) corresponds to small

valuewﬁm’/q when koho is large. In this case we will use another
method based on the fact that for snall values of o{ we have ex-
plicit expressions (25) and (25') for the function Vp(of ) and

analogous expressions for V(e ).

In so doing it is necessary to differentiste three instances.

I, n]_#l,nz;‘l

Likening of (25) and (32) gives in this case P :;ﬂ_\.@g&.

CIA-RDP82-00039R000200120005-2
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Analogously, for the upper boundary we have Qﬁ.b_:-9~“*3~°L . Con-
sequently @ = @,+Pr AL (’Pl By Y . Substituting thils

value of ¢ in (33), end assuning therein Rl 2 @, We have

gz (38)
Kc“o*“(ﬂﬁ'mﬁ

Here, in accordance with equatlons (26) and (27) and their ana-

logues for the index 2

Kb+ LR eR) = Kb

oo

wherein h is the effective thickness of the stratum, determined

by equation (30).

Denoting

wherein

/

A 7 e S }l',: ,
"C (: K ; h >’1

II. n1=l,n27‘ 1

In thés:case-it.is necessaryito’use expression (251)

for V;( & Y. Likening with

(32) gives

-

‘ﬁ(ﬁ) = (‘pl “F GP'L« T
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Subgtitubing this expression in (33) and agaln apguming ‘bheﬁn
A~ 2 W obtain, on performing certain transformatlons,

the formula (40), wherein

v e

kel (g ke
ARG ':;__"’JS,.ZL(_};_?_W,««W o st d [>
5.\

CKke l’\) ";-«.'-‘h

¢

i

(=Y} R

Here again h = hy + By * h, , and by ='E; » By ® Ky

TII. _ﬂ} = n% =1

Tn the same manner as above we have

.
wherein

Let us calculate now the field, glven by deductions of the ex-
pression within the integration sign in (1), st the poles which
have been found. (In so doing we assume that nowhere within the
finite region of the complex plane o is there a point of pole
concentration. Insofar as poles located within distant regions are
concerne, the analysis performed in an analogous menner to that
appeering in the Supplement of /1/ can be used to show that, they

are located on & line extending toward o W = " yzand approaching

the straight line o, ;?—; , and possess a point of concentration

of the poles ab infinity. This, however, does not preclude the
use of the Cauchy theorem on substraction /6/ A1l distant poles

contribute negligibly little to our solution.)

Tt is known that to do this we mst substitute ':.'\71/({ every-

7
op!
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where in the above-referred expression except in the denomlna-

tor, end replace in the denominator f =1 - V1V2629§° by Q%ié?{lxkl‘
The result obtained on performing these substitutions must be
multiplied tmngﬁl and thereafter summate for every L. Inso
doing, on utilizing equation (5) for the poles, it is not ALffim
cult to show that

(44)
— ‘"“‘“ ' -E)P"\Z'L""" ";"‘ "'L‘ ' 'f"f"\:é“"‘“ - (‘AK‘O \ho Lé‘%% '
- b (! (/\ \/'J.a dl Vl K.‘qn

Here, on assuming koh, sufficlently large, one can disregard the

first two terms in comparison with the last term.

Further, the expression

[e_ - \/IC"@&Mﬂ E;ﬁgﬁhvwlﬁ‘) - \/uﬁc{:e)@/&,e(w Lﬂ

can be rewritten on teking into account that Vy(ef g )V2(°€£ )ezb&ho =
= 1, in a form symmetric with respect to 2 and 7zo. (The reader
gshould not be perpiéxed by the resulting lack of symmetry with res-
pect to indexes 1 and w in the expressions obtained., In the same
manner one could also obtain expressions of the form containing,

in lieu of Vy(oC ), only Vo(& )}:

S Tt ] e T[T LA e .
* V, (de)

- L5 -
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Finally, on replacing the functilon Hgl)(kor cos X ) by its

asymptotle value, we obtain for the discrete spectrum
i
T

oS et gt

, . 1Kp A Coett "
X [ (Ot,eﬁeuﬂ e > ¥ )
Vi (8g) et " g

where by = ikh, sin({ ¢ , while & ¢ is glven by expression (35)
in the case of large number ,é , and by the expressions (40) to (43)
for the other /e . (The summation begins with £ = 1, since for

L = 0 we have from (40)o{Q = 0. However & = 0 is not a pole
of the expression within the integration sign of (1), because in
it the numerator also becomes zero simultaneously with the denomi-~
nator, Disclusure of indefiniteness gives a value equal to zero.
Further, the poles corresponding to Z( 0 are not located in the
region{o <(7(/ LT and — &2 < OCL < ¢ and are not involved in
distortion of the path of integration.) Thus the discrete spec-
trum is fully determined by means of coefficients of reflection
of plane waves from stratum boundaries. For small¥ ¢ these coef-
ficients are determined by formulas (25) and (25') and their ana-
logues for index 2; in the case of arbitrary O(,Z. they can be

represented in the form of converging series /8/.

With increasing wave number /e , attenuation also increases,
since according to formulas (40) to (43) under these conditions
the imaginary portion ofO(,Q increases, This attenuation is due
to leakage of energy through boundaries of the stratum., At suf-
ficiently great distances an appreciable emplitude will be pos-

sessed only by waves corresponding to small )e , and hence also to

 Declassified in Part - Sanitized Copy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120005-2
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(On more precise consideration the factor h, preceding the sum

in the denominator is replaced by h.)

Decrease of amplitude of the ﬂ&&gﬁ term with distance is
\ /

determined in addition to the generai factor 1;;5{: , also by

the exponent QEEfE-L"“’mﬂx’or in view of (40) by the exponent

e
@'”TT_'n‘A-Q , wherein 4 ] 1is glven for different cases by

the formulas (41), (42), and (43).

We have left for consideration the problem not dealt with

in the foregoing paragraph relative to the poles which must be

cireuited in the process of distortion of the integration path

on formation of lateral waves. Let us consider as an example the i

case when nyy 1. On distortion of path'Tg into-E; (Figure 1),

the conbour enclosing the section can be drewn along line CAB
(Figure 4), where line AB is selected forthwith as a path of
most rapid descent, In so doing, only those poles are involved
which are located below line A;B, for instance Py, so that we

must add to the solution the deductions at these poles., Poles

- 47 -
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Tocated above line AiB, for instance Pp, remain a8 yet not

volved,

Figure 4. Deformationcf the path of integration TZ in the case
when nq > 1. The dotted line represents the section extendling

from branch point Ay

For calculation of integral along CAq, the path CAy by a
conbinuous distortion is converted to path of most rapid descent
B, chenging at the same time the direction of integration into
the opposite one, after which the integral is evaluated as is
shown in Section 2. In so doing we must eircuit pole Py and the
other poles located above line AjB. As & result there are eir-
cuited counter-clockwise, once, all the poles located in the region
o<d, Q% and C(.;_Qo , the deductions at which give on sum-
mation the discrete spectrum which we have written in the form of
formula (45). Thus all of the results stated herinbefore remain

unchanged.

Tt ensues therefrom only the following circumstance not
previously noted: deductions must be made only at those poles
located above A1B, where Re\[;sz::;;;&T 70 , and only at those

g
located below A1B, where ReAjm)n_qré%K & 0"~ This follows from
th fact that along path Chy |, Reym —Ge{y0. (See rematk
on page 518)., This sign of the real portion of the root is re-
tained also on continuous deformation of CAp into BAq,. even though

the imaginary portion passes through zero, since we Cross the sec-

. . s +
tion, and changes its sign. Conversely, on path A13)7{ELYLn/~uwé§(4; O

DP82-00039R000200120005-2
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Tn practice, the poles located below AB apparently heve no sub-~
stantial glgnificance gince they possess a conglderable imaginary
portion and the discrete gpectrum waves which correspond to them

will undergo rapld attenuation with distance.
Sectilon e ExampLes

We have seen hereinbefore that the acoustic and electro~

megnetic fields at each point of the stratum are determined in 8

gimple manner by means of coefficients of reflection of plane waves
from stratum boundaries. In the gneral case of arbitrary strati-
fied media bounding the stratum from above and below, these coef-
ficients are presented in the form of series (see/8/, and also

the Supplement). Tn some instances they are known in the finite

form /7/+
We will consider here, &8 examples, the two simplest cases.

1, Stratum bounded above and below by 8 homogeneous

NERIARASI 2o

half-space

In such a case

SR el

e | ik =\ ) - o
V, (o) = SRS

]
A B EY -t %

and analogously for Vo( & y. Here ny is the index of refraction

in the lowerT half-space. FoT the sake of definiteness we will as-
/d
sume np 7 L. Further, my E;——J“ sn acoustics and ;anar' in

¢

electrodynamics .
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Resolution by powers of ¢ hes the form:

fo
R e

\ '\.

(ﬂ
Digregarding 9{3 and comparing (48) and (25) we have:

tg i
S (49)
‘/~ ) ""
The discrete spectrum is given by expression (45) or atb
gufficiently greab aistances by the expression (46), wherein L
~= for not small 1/ (say}?j? 2) is given by formula (35), end for

small £ by the formilas (40) and (41). At the same time

%/ - RE‘;

At distances
C fé (51)

of the entire diserete spectrum, an appreciable amplitude will be
héd only by one wave which is most slovrly attenuated, and is de-
fine’é by the term corresponding to ,é_ =1, the expression of whieh -

sccording to (40), (41), and (46) is:
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On the other hand, resolution of Vl( ® ) by powers of

o o _
Ve ealef = e (With At =N ) gives:

...... S —

T ””“/ w‘LO‘ﬂ.« 9(\.

YAC R Ve >

wherefrom we obbain in accordance with (13) for the coefficient

Bl’ which determines the amplitude of the lower lateral wave,

the expression:

7..«’»-
B =-—= . (53)

- "

B VoY

As a result, in accordance to (16) the lateral wave by or-

der of magnitude will be:

(54)
i S ey (= ) K,)A

An analogous expression is obtained for the upper lateral

wave Wy, At distances r, where

b (L Keby™ oA .
r\_,\,(/[/ Q—-_—{;_’ J C_\IKDW ;;-« (

- 51 -
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the lateral waves become equal in amplitude with the last wave

of the discrete spectrum, and at greater distances exceed it. IE

ls belng assumed that ny and ny are real,

II. Stratum Formed Between Two Plates of Thickness J) and

du.y Placed parallel to Each Other in s Homogeneous Medium

In electpodynemics this is a plane waveguide with
walls of finite thickness. The coefficient of reflection is

then /9/:
vV, (&) =

"

R ) ton ™ (56)

AN
i

st

m:),:‘/‘ ,@(Lw}'()( —- A Loa"b’\‘ Ao e b N At V\..‘l’/’ 7—%19"\ “

At |

K ’ (Kugl\//v\}/—:l@-ﬁ;u}ts v

where my and n, have the same significance as above and charac-

terize the material of the plate.
Expansion in power series of ¥ is of the form:

2, Lomnas |

....\/I<VL‘>':L-\”M

o

' 2 s - ~ " .

.':;’-;q KO&I”/G‘J"':‘;{:—L" )’?‘ch?;.hwpé/w;\ A g
/ .

" o, B )
CUreot . g, % Ly 3 P '
~-}~ [_”___:.,._.‘ (\_Lﬂ‘m«.l »%))M;} ﬁoé’\/ 4 e 3 —»&25' )’(0 /m../ 1 )
o e .
J) /
s, K ""7”"""! A ~ .
T LT IR
, O, s /(@6,0“‘! Saey
wherih &, = m’;-,/ .
- 52 ~
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Digregarding the 08 term and comparing with (251) gives:

"N " X - ‘.1\"
o — C/(a [\\ 0 g ,5‘- ) _._..,.J..-.m»-—-—-—-»—-»

o

and analogously for ¢y and do of the upper boundery. The dis~-
crete spectrum 18 again determined by formula (45) where AL

is formed from (35), (20), and (43).

The lower lateral wave is given by expression (29'). The
amplitude, 88 expected tends toward zero 1f attenuation is pre-
sent in the lower plate (nl 18 complex, for example, & conducting
wall of a weveguide in the case of electrodynamics), while the
thickness of the plateéj increases without bounds. In practice
the latersl wave will have @ Zero amplitude if the thickness of

the wall is grealber than that of the skin-layer.

Sugplement

Let us derive formulas (25) and (25'), giving an explicit
expression for the coefficient of reflection from an arbitrarily
plane—strahified medium in the sase of small angles of slide &
We assume the presence of & stratified inhomogeneous half-space
having a lower boundary %z = - e and an upper boundary z = %1 and

led us consider first the case where Ny # 1.

Tn accordance with equations (111) and (W) of Supplement
to /1/ (see &lso /8/), the reflection coefficient cen be written

as:t

4o V (= ) -
V(D) :__,,_,,LJ_.‘/
%“(7“:) *‘?’;

7
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while function u(z) is determined from equatlon:

\ b [ S
-\i}«‘i‘-‘ “:m (Y] "}’""'" ( ) L, ! N Ut )
dn I

and the boundary condition z Dy e WPy A 1, Hereinm =

= m(z) and g = q(z) are functions of coordinate z determined by

the correlations:

om0

e (2 T K g\ on2(2) = ot (117)

/% AN (‘“?,.: )

St a1

in acoustics

e Qv)

in electrodynamics

where n(z) and 0 (z) are varisbles in index of refraction and den-
sity of the medium when 2 < 21 V&0 15 the density of the homo-

geneous medium where z 7 Z§e Further, g, and q; are used to de-

note:

?WD -, j (“y_,D - .am—x.,(‘?ﬂ l) - ;‘: 0 /’»L‘*-f'- W, B (V)

N
° A ey =l o, in acoustics

4, =4 0)" (V1)

in electrodynamics

On expanding Vl(CL ) in power series of  , and disregar-

ding 0(3 , it 1s sufficient, as is apparent from (1), to know ex-
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while functlon u(z) is determined from squatlons

. e ;
._“:J Y ey Lyane "f“"'"—" ( i
d ¥ [

and the boundary condltion z ~—3 - W2, W3 1, Herein m

m(z) and q = q(z) are functions of coordinate z determined by

the correlations:

o (2 T K\ o () = o™ (111)

Qf
SN

)

o

w o
P Q L..A)—

where n(z) and 0 (

sity of the medium when 2 < %7, ez,

R e
geneous medium where z 7 Z}-

note:

=g

e e |

e /B )
Ko™ |/ % ~ o,
, " I
. &'}l} e ? K:”. (:,n) et
S
"—L}L\) Wh‘,' — (g A

N

On expanding Vy (& ) in

ding o3 , it is sufficient, as

in acoustics
ey

in electrodynamics

z) are.variables in index of refraction and den-

is the density of the homo-

Further, q, and qy are used to de~

,wﬁﬂhizulj - b

(V)

in acoustics (\/‘\

in electrodynamics

power series of f , and disregar-

is apparent from (1), to know ex-
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panalon of u(zy) into a series with an accuracy up to ® . Since
from (II) to (LV) it follows that u(z) expands by even powers of
o , one must postulate generally that ™ = 0, Having assumed
in (II) W = 0, and solving this equation by the method of suc~
cesalve approxlmations, considering at zero approximation the right
portion of the equation equal to zero (for details see /8/), we
have in the acoustic case:
Ty
()= ':K(z\/{:\‘}:‘r}ﬂ Z2(1) *k; “‘%;L“ (”’“x" D I (7') 4 -
' ~tn

(VII)

wherein

76) = )

v g

This series could be contimied for any length, It can be
shown that it converges, and the convergence iz the more rapid the

thinner the layers containing the inhomogeneous components of the

medium,

On substituting now the quantity u(zq) into (I) and expan-
ding in series in terms of ¥ , we obtain within an accuracy of

aid
A inclusive

V){ &) = — - m,./s o 4 'L%,mvtl) o 6’174/ ")

(VIII)
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whereupon formula (25) can be considered 88 proven,

In the elactromagnetic case in the course of all compu-

yations and in the terminal formula, —/—OL- must be replaced by n%_,
a5

M
i
emd/;,f by —;{{(’:‘) .
upper half-space 2 4 Ao 0

For the coei‘fician’o of feflection from the
we obtain the same thing,

put with the substitution of index 2 for index for 1, end the re-
T S

placemen‘t gnroughout of integral 5 by the integral 5
2 +e°

In the case M = 1, in liew of equations (1) and (11) it

is convenient to use other pquations obtained from (1) and (11)
!

by replacing u(z) = m , where n (z) is & nev unknown func-

)

yion. 1In 8O doing we have
%o — Ll L’fﬂ)
Vv, (x) = e ()
ot (=)

We find M (z) from the equatmn
— - 71.“)
41

with the boundary conditi —y and n—7 ‘07/-,

Tntegration of (X) by the method of successive approxima-

tions gives

m (@) = ?” pim G T

_{__7\?5 _/I\,\(_'L.)dl’}"

T

PRI St

j*’z:%z\f\()

IR

oSS
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where

P
m =S F G-t )
2

Since when ny < 1 we have %, - Ka,';‘? AinnQ, the -first
and the third terms in the expression for 7L(z1) give terms -
On substituting (x1) in (X, taking into account (V) and (VI)
and expanding the result in series in terms of o , We obtain
formula (25), wherein

Dlv‘:q

it

A

where
T
- n " /. ,
AlmN\o(LM’ ™ Mo Cr)dw t 0

..090

N

2
t A _,4,.{--—- A +_ y o
D = At [.;.mj Mo ) /

] D/)/ Q e /2 (XI111)

T
-, : A " /V\l'm & B 1
M, (2) =Ky ‘"‘”ﬁ"' ()

—tf

Transition to the electromagnetic case is effected as usual
AR
by gubstituting forw;g“")' , nz(z).
There remains the gerivation of formulas (21), (22) for

the coefficient B‘l which characterizes the emplitude of the lateral

wave. According to (13) it is determined from expanding V4 ( A ) and

i Declassified i - iti
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+ —
and U, (& ) in power series in terms of VMTWM%V( -

To do this it is convenient to utilize formila (IX) where
| (zl) ig teken from (XI). As & result, there are obbained, the

same as above, the formulas (21) and (22).

Supplement Added on Proofreading

The assumption set forth in footnote to ﬁage 525 rele~

tive to the absence of a point of pole concentration in the finite
region of plane ¢{ , had appeardd to us as not being questicnable,
However, since this question was involved in the discussion fol-
lowing presentation of our paper at the Session of the Depart-
ment of Physico~Mathematica1 Sciences held on 26 September 1949
(statement of N. V.\Zvolinskiy) we deem it appropriate to point
out in the present supplement that the absence of such a point

cen be substantiated if the following limitations (in the acous-

tic cage) are made for functions P(z) and n(z):

(1) Both functions are finite and contimious for all values

(2) Function P (z) is never equal to zero.

(3) For all values of z the functions have a first deri-

vative with respect to z.
(4) The functions tend toward constant values when 2

These conditions are fulfilled in all physically attainable
= *cages. (Instances where- functians . 2 (s} and n(z) displgy sudden

changes signify in all physical problems that these sudden changes

039R000200120005-2
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are corrective trangitions from rapidly«changing, smoothly-varylng

functions.)

To prove the sbsence of a point of concentration of the
poles under these conditions it 1s eufficlent to show thab the
1eft hand portioen of pole equation (5) does not have a point of
polé concentration in the finite region o . This in turn will
be proved if we can show that neipher Vy( & ) nor Vy( % ) have in
that region any esgentially~-special point., This can be done on
using for example for Vl( d ) the expression (I) of the Supple-
ment, and replacing equation (II) of function u(z) by a system of
two linear equations of the first order, which are then solved by
converging series utilizing the method of successive approxime-

tions of Picard.

We take the liberty of writing the final result for Vl( X )z

/40«4{%0( W e VT

\/, Cd\) - --.--»f-—--—‘-»-..-n....—-,.....»,.ww 5

wherein
Ty Y
ryv/':'.‘..f’f"Z’[S '.gd’z--}—ftg{jz,
o _L/

Z-(

j(?"n“» 4715%475?“{—@ -t '(A>

o

Tw %
~ {

Y Y /l"* B
- w4 { o ( ’
e R Loy S S C)
¢ vt

[ 2! z! 1!

Ko A ~ — —
= S e, (U=

Ly
Al 7

2! denotes a finite, but sufficiently remote from z = Z, coordinate,

whereat the medium can already be considered as being homogeneous.

Since the series set forth converges for finlte o, it fol-

-5-
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lows that functions w and v are 1imited throughout the finite
region and have as speclel point only branch point®{ = arc ¢os nq.

Tt follows therefrom that V(X ) has no essentially special point.

Series of the form (A) and (B) were previously obtained by

B, D, Tartakovskiy.

Tn conclusion I wish to express on this occasion my grati-
tude to V. A, Fok for a number of valuable suggestions,
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TIJ. AVERAGE LAWS OF ATTENUATION

In the second part of the present paper /1/ we have studiéd
in detail the field of a radiator of electromagnetic or sound waves
in a stratum bounded by two arbitrary stratified inhomogeneous
media, We have shown that the field at any point of the stratum
is composed of a series of waves the amplitudes of which decrease
with distence in accordance with the law 51%%§£}~ ’ }Z = 1,25000
(the so~called discrete spéctrum) and of twg {:;eral waves the am-
plitudes of which decrease according to the lawMgi:Ezj:;” , 1 =1,2.

"

A"

(Here,j@ﬁ[ is used to denote 274w4¢ma10£g , and }{Z denotes

k, Im ny /see formulas (45) and (16) in /1/). The damping coef-
ficlents, ,éac of the discrete spectrum waves end ﬁl’of the lateral
waves are of essentlally different nature. The former are due to
removal of energy from the stratum by way of leakage through its
boundaries (it being assumed that absorption within the medium’
constituting the stratam is low), while the latter are due to ab-

sorption of waves in the media bounding the stratum,

At a sufficiently great distance from the source of radia-
tion the field is determined by the least-~damped wave of the dis-
crete spectrum or by lateral waves, and can be rated by means of
formulas shown in /1/. At smaller distances from the source of

radiation other waves of the discrete spectrum also become impor-
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tant, the number of such waves belng very large 1f the thickness

of the stretum 18 great, nemely of the order of twice the ratio

of stratum thickness 1o wave length. At such distences the field
1s prectically fully determined by such & get of & large number

of waVEs, while the lateral wave contributes but & negligibly small
component thereta, (With an impulse regimen of the gource of
radiation it can still be rogistered due to the time difference

of its ingress in comparison with those of other weves. We do nob,
however, consider this instance. In meny cases of practical A
portance, the interdal of distances at which the field is deter~
mined by such & get of waves 1is of essential significence. Ab

the same time the field within the stratum possesses & complex
interference structure, caused by superposition of all these waves.
Although caleulation of amplitude and phase of each wave at an
arbitrery point of the stratum on the basis of /1/ presents no
aifficulties, the sumnmation of all of them and analysis of the de-

pendence of this sum on the coordinates of point is most intricate.

Tn such a case,of greatest interest is the determination ef
a certain average dependency of acoustic pressure or intensity of

the electromagnetic £ield on distance. On averaging the complex

picutre of interference mexima and minima becomes blurred. This

nfine structure of the fieid" can a1l the more be omitted from
theoretical consideration since it cannot be observed experimen—
tally in most of the instances. This is due either to the unstable
conditions of wave propagation as & result of fluctuations of pro-
perties of the medium, which makes it necessary to repeat the mee-

surements and rely only on an average result, or is caused by non-—

9R000200120005
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monochromatle nature of the source of radiation,

Derivation of the average lews will be the topic of the

present, the third part of the instent paper.

Section 1. Average Lews of Attenuation

Let us derive the average laws of attenuation for distances
sufficlently remote from the source of radiation by comparison
with the thickness of the stratum (exact criterion see below, Sec-
tion 3). Under such conditions the discrete spectrum is given by
formula (46) (see /1/). Consider the acoustic case first, The
mean square, per period, of acoustic pressure at an arbitrary

point is given by the expression

L pres )y )

where Y (x, z) is the acoustic potential, A is the density of

the medium and &V the angular frequency. This expression dis-

plays a complex dependence on coordinates characterizing the in-
terference structure of the acoustic field. It is gubstantially
simplified also on effecting averaging with respect to the posi-
tion of the receiver, i.e., with respect to z, within the thick-
ness of the stratum, For the thus-derived average scuare of a-

coustic pressure (we will denote it by p2) we have according to

(46) (see /1/):

}\O
ot /

-l . "
?a'x_ :M/Omc..‘yﬂw ]'\\5}%&1« s
2

he
@]

D L . s
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while %ﬁ is obtained from]&w , if in the second bracket of (2)
m.

within the sign of integration, the index t,Q is replaced by m.

Let us determine this integral, From (2) we have

hpguﬂﬁ

I,Qfé’."‘”",'") hotha \/(% ‘i-\/( ?T'> . er T

o (3)

mGR)e

,QTF e
AT

We will assume (in Section.3 it will be shown that this holds

for sufficiently large values of kT, see below (48) and (49)), that

Part - Saniti by APpIC e e
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in the sum of (1) only those tLerms are smportant which contain
sufficiently small { velues, 80 that

. /0—77' e Q f{dﬂ\f?"m)
] it a | Ead (W
/ .
(Footnotes Differentiation of the modulus of the coefl~
ficient of reflection from unity must be effected in our approxi-~
mation only for the terms producing attenuation of the field with

distance, and this will be done hereinafter.)

The coefficlent of reflection Vq( &) from the lower boun-
dary of the gtratum is given in the case of sufficiently sméll
sngles X by formulas (25) and (251) (See /1/). ©Of these, for=-
mile (25) relates to the case when nj # 1, l.e., when the velocity
of propagation of the waves in the stretum does not coinclde with
the velocity of propagation of the waves within the lower medium at
a sufficient distance from the stratum, where this medium may be
considered as being homogeneous. Formile (25'), on the other hand,
relates th the cawe when these velocitiles coincide, Li.e., when
np = L. Condition (4), on taking into account formulas (25) and

(25') can be written

: ) A L&)
~F D 4&’ Kobh

J,,Q%Y@i |

The integral terms in (3) can be disregarded under certain

conditions. Indeed

Sanitized Copy Approved for Release 201 )039R000200120¢
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that according to (30) (see/1/)

wherein it is taken into account

h="hy +h +h~ )

Rxpression (6) will be small in comparison with hg, i.e.,

in compariston with the first term of (3), if

hrhe e,
h

h

Indeed, when /éiﬁ [ it is only of the order of Py

and when_ﬁzfx,/ its order of magnitude will be

e g uthr
h<5'1¢/@r h mDmga,e—ﬂ"Qh,Mm),

In both instances there ig obtained a quantity that is small

comparison with hg, and which we will disregard.

Thus, on taking into account (4), we have

Tn exactly the same manner 1t is shown that

Tg,. . = O,

- 66 -
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On teking into account (4) as well as formulas (25) to (28)
Lo
i‘fo \)

in /1/, we have, since C<£ _~ ,

b Ky by

«(Ci W

' L
\/‘ Q\R‘;‘W ot &

In addition, according to (40) in /1/, we have
(12)

where 40 for the different cases is given by formulas (41) to (43)

in /1/.
Taking into account (9) to (12) we obtain from (1):

AR e F ’ AT
o o L Chy AR A
[ | e At .,1.(.“,.{1-._(__..'”:/.:.,.2)@_ L

/ Ro nb™ L h (12)

)

If we effect herein the averaging also with respect to the posi-
tion of the receiver, i.e., with respect to z, within the limits
0, h,, we then have:

A -
—_ WW:L{Z e"%QﬂAﬁ?ﬂ

f«’b T !
Konvh i

The calculations given above, in view of (5), are correct
only fof sufficiently small values of 43 + Nevertheless, the sume

mation in (14) we extend up to £ =oo . This is correct if the dis-

ied in Part - Sanitized Copy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120005-2




tance r is sufficiently great, so that the terms corresponding to

large L velues, in (14) and (13), will be negligibly small,

The quantityJAJZ in (13) and (14) characterizes the dam—
ping of each of the weves of the discrete gpectrum, with distance,
which takes place because of leakage of energy through the boun-
daries of the stratum., We must differentiate three cases: nj #
Fl,ng ;o mp =1 my #1; ny =mny=1; for which A L is
given, respectively, by the formulas (41) to (43) in /1/. On sub-
stituting these formulas in (14) we obtain the following expression
for the square of acoustlec pressure as a function of distance in
al). of the three cases:

7 wo A
%E‘T - /af\¥1 g CI&§ 2 (15)

whereg~ (r) has a different form in each of the different cases,

namely:

I. ny #1, by #1,

o )
V"(/\.) o7 ("") ZQ. (16)

= A /e L1 4 >
II. ny =1, 0y 1, ~7E; > h \'ZA%“ }Vb )
()=

or, on assuming that
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- el Q*‘“"“'rI’“‘)
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(19)

On comparing formulas (18) and (16) we see that the law
of attenuation of acoustic pressure with distance is the same for

the firpt and the second case; only in (16) the exponent contains

ph Since é’ y ] tohs ;3,/ it follows that in the case II the

acoustic pres sure undergoes attenuation with distance more slowly
than in case I. Subsequently we will see that attenuation in

case III is found to take place still more slowly.

This is due to the fact that with sufficiently small angles
of slide W ‘the stratum boundary is more reflective when ny = 1,
and less reflective when nq # 1. Indeed, according to (25) and

(25') of /1/, we have | Vil =2 -"J%& for ny # 1, and \V,\ -
:;a-udldvfor n] = 1. With a sufficiently amall W first expres—
asion will differ more from unity than the second, (When nq = n,
we limit our considerations to the case when there is no absorp-
tion in the media bounding the stratum (n(z) is real). Then, as
this can be seen from formulas (XI) and (XII) of Supplement to /1/,
the quantities ¢y and dp, and their analogues for the upper boun-

dary, are real. No difficulty is involved in congidering also the

in Part - Sanitized Copy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120005-2
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caese of complex Cq and dy. Then, with a sufficlently large ima-
ginary portion of ¢ (or of oy for the upper medium) the ceses

1T and III will not differ by thelr attenuation law from case I1.)
A1l these considerations must relate, of course, to reflection from
the upper boundary of the stratum. As a result, Case ITI corres-
ponds to the most reflective boundaries, and naturally therefore
the law of attemuation is found to be the slowest. In case II

the lower boundery reflects better, the upper less well. Absorption
in the lower boundary can in this instance be disrvegarded entlrely
in comparison with the absorption in the upper boundary, which is
expressed mathematically by the condition (17). Hence in the law
of attenuation (18) for this case, only the characteristic of the
upper medium pé is present. In casé I, both boundaries absorb
relatively strongly, and the law of attenuation is found to be the

most rapid.

Let us analyze more in detail expressions (16), (18), (19).
In so doing, it is convenient to introduce non-dimensional dis-

tances, defining them eas follows:
1

T . /ﬁ:"’-/’ICTETD % 2

(4

- = N
IT . A 7~;¢%ﬂ(§7§§%;’;> “F;’ ’

5 N
b W i
- 2l (',7:;7:) R

T /ge

we have then,
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(21)

e sumg. For & suf—~

n the first of thes
gral 1n ﬂ from

Consider to begin Wit
placed by an inte

/3 , it can be Te

ficlently small
t of which we have

ags a resul

| T
PP iy
T ﬁ_j/—“‘/'“o"” - (22)
!

n that the error resul~

0 to ¢

ler it can be show

the formula of Eu

Using
e must have

rom is of the order of 7, Hence W

N

) end taking 1

ting theref
(23)

nto account (20) we have

on substituting (22) in (15

o ™Y
° e 1 (24)

™
- .
1 e
—
\

M/;};!'h

s which setisfy cond

-

stion (23), the square
)

Thus at distance
b the law 7B/~ !

of acoustic pressure decreases in accordance wit
At greater distances, satisfying the condition

A

1y the £irst term wi

(25)

of the entire sum (16) on 1). be of importance,

g to (15)‘at such d ave the following

il

igtances we will h

.-~

and accordin

1law of attenuation
2w 1T -
) e “r, (26)

s A
# Konh™
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The Figure shows & graph of function g7 C,O) , determined by the
firet expression of (21) obbained on numerical summation, Foru
mila (22), adapted for use at dlstances which satisfy the condition
(23), corresponds on this graph to the initial rectilinear ssctor
of the curve., The end of the curve in the graph corresponds to

the law of attenuation (26).

Drewing on page 539 of text: Graphs of functions determining the
law of ettenuation of acoustic pressure and intensity of electro-
magnetic field with distance in various cases. Along the axis of

the sbscisse is plotted the non-dimensional distance L

\

The law of attenuation for case IT will be the seme as in
case I, somewhat chenged 1s only the definition of the non-dimen-

sional distance.

Tn case III the law of attenuation is again given by for-
mula (15) wherein now it must be assumed g~ =93 (,03) . While
3 (r3) is given by the lest of the expressions (21) and is also
shown in the drawing. At relatively short distances, satisfying

the condition

3 (27)
Vi <&y

replacement of the sum by an integral gives

tized Copy Approved for Release 2012/04/2 RDP82-00039R000200120005-2
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®) VRES)
on sTostitTEdTE T R

ain the lew of attenuation

count (20) we obt

0. 2930

£ ="

) the law of at‘oenua‘oion coincides

r distances C/’3‘7/ !

At greste
replaced by /3

with (26), wherein 2, 18

.

s to the gverage 1ews of attenuation of the
4 are expressed

\\) (T’Z)

We will now P&
electromagnetic field, The components of this fiel
by means of the vertical component of the Hertz vector

nners

in the following mé
| ] d,ﬂ-«» = 9
m Qﬁ"‘ﬁr\_ ) D@ C

e

E‘_L — —-—-w;;

(30)

of Y from formila (46) of /1/»
and X DA._‘77 \ ,

On subs'bi‘mlting therein the value

LN
snto account that k_‘ﬁ o\“>/\z |
o7\

we havet
| il -:-_(_._},ET.-J:" E
/Q. [@ n e \/’ R " /

and taking
Kph

L= LQHI«.,

b 5
T L L&ﬁﬁw/
_t [ et i ' )
e Gl T 7 C
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In exactly the same manner as above, effective averaging
with respect to thickness of the stratum, in case I (m#1, ng #1),

we have the following laws of attenuation:

T N '
I = el (A) (32)
Pa¥ ,,{ f‘

av

i\

B e ..,_......,--—-—--—-' ( tA) )
= — A T TN
b”l. /“\.sz’v

wherein

e
g)= ) Az-rd
,(7‘:.!

while V“;C/%) and /3 are determined in accordance with equations

(20) and (21). Functionw; () is shown grephically in the draw-
%,
ing. At small values of /0) satisfying the condition /3 é&%; } s
replacement of the sum in (32) by an integral, gives:
V/_-“

74 Ch) = R
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This determines, according to (32), for E :, a law of

J —— e
attenuation of the form 7%, . For E'_:_ and H;.: ~according

twnnmuwwnm.é- . With %, % we will
A e
have
.... o m<{0> A (:1-—4/9/ ;
T4 p) = alf) 7= (35)

Tn case II (ng # 1, n, # 1) the laws of attenuation will
be the same, only in lieu of /0/ met be substituted the numerical

distance /2 .

In case III (ny = ny = 1) we have:

. 3 .
;"" — SE.ZZ‘-:{--- 0 ( ~ J)
~ N’ (36)

and
\3 TT "~ .,
J—— w"}":; — "“',JS"QM“-" U“’:J' L /{:).3 )‘)
\-:- . “:::-n e - v/‘ i b 0
v P -h (37)
where o 43
\ e s L 3
- (A)=/ 7
T > ) :
Lol 3%

while the function a@*“‘.,\) is determined by expression (21) and
has been studied above. With V0 L& | it is given by ex-
pression (28) as a result of which for E,:f and }T"-* we have

!
the law of attenuation = .
~Ya

Function o"é—»c,a,\) has not been encountered previously. It
-

is shown graphically in the drawing. With /A &< | it is deter-
. )
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mined by the expresslon

/ yren|
oz (%) = 30, (38)

which gives for Zﬁ:f the law of attenuation j%,, , which coln~
oldes with the law of attenuation in free space. When |

we have
. . b o o
gt (ﬁj) e U7 Q( '&3 . € !

A1l of the above-presented qualitative considerations per-
taining to the acoustic field are automatically transferable also

to the electromagnetic instance.

Section 2. Interpretation of Results from the Standpoint_of Geo-

metrical Optics

. o e
The shove-derived lews of attenuation TN "y for

the square of acoustic pressure and the analogous laws of the elec~
tromagnetic field ensue also from considerations based upon geo-
metrical acoustics (optics). In the specific instance when the
stratum is bounded by two homogeneous half-spaces, this problem
was studied by us at an earlier date /2/. Herein we will consider

the general case.

In approximation of geometrical'optics, one must visualize
that the point of reception ig.reached by the direct ray and an
infinitely large number of rays, reflected a different number of
times from stratum boundaries. Bach of these rays can be visualized

as being emitted from a certain "imaginary! source of radiation.

. Declassified i - iti;
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AL) the imaginary sources of radiation are dlaposed along a
glralght line, perpendicular to the boundaries of the stratum and

passing through the source of radlation,

The averaging, resulting in a blurring of the interferential
structure of the field, corresponds, on such an approach, to the
non-coherent (energy) summation of the fields of imaginary sour-
ces, We will be concerned with the field at great distances, rela-
tive to thickness of the stratum, from the source of radiation, Un-
der such conditlons the locatlon of source and receiver with re-
spect to boundaries of the stratum is found to be of no importance.
Therefore let us suppose for the sake of simplicity that source of
radiation and recelver are in the middle of the stratum, At the
same time all the imaginary sources will be located at the same
distance h from one another, h being the thickness of the stra-
tum which we assume to be equal to the effective thickness referred
to in the foregoing paragraph. The distance from the point of re-
ception to each of the imaginary sources of radiation will be equal
to Ry J;k + (nh)2 y wherein n = 1, 2 .., Each of the sources of
rediation contributes to the square of acoustic pressure at the

point of reception, the following component

4
/001" o\)\‘“ /\/\T (ﬂnm} N\’).‘ CO\MD
PR “

R

me

wherein p and q are the number of reflections of the corresponding

ray from lower and upper boundary of the stratum, M ( oC,) and

i
py Approved for Release 2012/04/26 : CIA-RDP82-00039R000200120005-2
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Mz( %) being the coefficlents of reflection from these boun-
daries, in energy, that ls

N

/wm¢m)zjvﬁfim)f3 /Mx(ﬁm3“JVL®m»)(%)

and finally
P
A= e G T (40)

is the angle of slide of the ray relative to the strabtum boun-

daries.,

(The constant coefficient depending upon the power of the
source of radiation is selected here, the same as in the foregoing

peragraph, in such a manner that in free space we have for the
C Ry R« cut)
acoustic potential \ :-_!P\-e ¢ .
square of acoustic pressure we will have %”’—:_
A e )
— A
PRVAN

Effecting the summation for all imaginary sources of ra-

Hence for the mean
. . L T -
/Oo v ) \Y) L:.
P,

diation, it is not #ifficult to obtain:

(S
oo S Frx (M)
N “
.
A0 R L

oy (Par VA (g AT VM (g s VT

i -
R‘:é. o~ (41)

RL«.

B e P N

. PTGy ) T (3 ""‘““*’Qj 3
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We will obtain analogous series for all components of the
electromagnetlc field, with only that difference that within the
gum sign will be included angle factors characterizing the direc-

tion of the source of radiation.

At distances from the source of radiation, which are large
in comparison with the thickness of thebétratum! termg of series
(41) wil). decrease very slowly. As a result, congecutive terms
of the series will differ but little from one enother This makes

it possible for us to replace the entire expression in brackets

in (41) by

e () M ()
R

N, VN

and to replace the sum by an integral. As a result, we have

(%)

g A
Vi ,/.j M U I
5 .

With small angles of slide the coefficients of reflection

Ml and M, are given by formulas (39) (See above) and (25) and (25")

from £1/.
Let us consider first case I.

Case I. nq #1, 147 #1

ESAS
Here My (¥ ) = e Lpi and M, is analogous, hence

M (V\.\) /\/\"L.(Vi.) s GQL{%/% b
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=

T et

t = n! + p!
P Pl Py
Lo h

AN
et

On teking further inte account thatcg AL , Wwe have
e

from (4R)

o nqth
- .)’\/ 7;

e

a2 % AL & J—

AR I

A lwn/ej e g
A T

¢ with the above-obbained expression (24). In so

which coincide
inator with-

doing we have disregarded the second term in the denom

in the sign of integration, since we assume throughout that

fx o "}/)—\J‘ 7‘)'\'
oA, R LT
<L

Case II, as we have already seen, does nob congtitute any-

thing qualitatively new. Let us comsider Case ITI.

Case IITI. n, = n, =1

Here, according to (39), (see above) end (25') of /1/:

) —ud 4
M) =e

and analogously for My(d ).

Consequently "L
R Q_\J,dff\.
i, Co) Mo () = €

f/ ?—6// 7"*‘1/’1,,_4
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Now we have from (4R)

L
[ lb r-’\:u ‘r‘?""' . aatyr o
g =/l T O ™
o e & ST\ L e |

o

[ Nt e - T P om——
/r — »/Do o /_\’-V“/'L,.ﬂj‘);\. -“‘mh’“ (45)
0

/
/
X7 )
which coincides with (29)

Tn the same manner one could obtain the average laws of
attenuation, derived in the foregoing paragraph, for the electro-

megnetic field.

We have made the assumption that in the sum (41) and the

integrals obtained therefrom, only the terms corresponding to

small values of E(q;;§;:$%} are imporﬁant. This corresponds to a

situation wherein in the entire endless chain of imaginary sources
of radiation it is assumed as emitting radiations only the part
nearest the basic source of radiation, the dimensions of this ra-
diation emitting part of the chain being small in comparison with
the distance to the receiver, This assumption can be substantiated
in the following manner. In integral (44), due to the decrease

of the exponent, the primary part is played by the quantities n

which do not exceed the order of magnitude

ot

Bt 753
S
This gives the following length for the radiating part of

the chain:

(Footnote: A simple, explicit presentation can be made

for the law of "three half" (é{h fL,:%7 ). Since the length
™

Sgle
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of the radiating part of the chain is small in comparison with

V
the distance, one can write for ite field éggr\dé%:, wherein W
18 the summative radiatlon of the chainj it is obviously propor-

tloned to the length of the radiating part, of the chain, that is

Ve

As a result we have é?“ - ﬁ:£§¢l;éj\“, that is, the law
of three half. From these considerations follows the average law
of attenuation for chennels, the transversal dimensions of which are
are large in comparison with the wave length. In such a case
there radiates not a chain bubt a certain plane reglon, the linear
dimensiors of which are v\\ﬁﬁ , and the area N /L . Consequently,

the tobal radiation will be A/ - and the law of attenuation%iun,%; D)

i

}
-

,A«v\cﬂ\wju

:«‘._ _/{'m-\,. f‘\,_,..lww \{_‘}'“ }mv
7

consequently, for the maximum engles we have

&

Arvm o

This sngle we assume to be small.

Considerations pertaining to case III are presented in an

analogous manner.

_thgction 3,  Summary. Limits of Applicability of the Results

Obtained

. -~
.
-

L —— -

Let us review the above-derived laws of attenuation, with
distance, of the acoustic pressure and components of an electro-
magnetic field. In so doing it is convenient in lieu of taking

the usual distence r to utilize the non-dimensional distance £

Declassified i - iti;
sified in Part - Sanitized Copy Approved for Release 2012/04/26 : CIA-RDP82-00039R000200120005-2




Declassified ved for Release 2012/04/26 00039R000200120005

determined for various cased by the formula (20)

(Footnote: Herein we omlt from congideration the cagse of
totally reflecting boundaries of the stratum in which the law of

atbenuation is known to be cylindrical.)
Tn the cese of large non-dimenslonal distances, i.e., when
ol (46)

of primary importance is the lateral wave, the square of ampli~

tude of which decreases according to the law ﬂu~%ga (see /1/).

On decrease of the distance there "comes into play" the least-
damped wave of the discrete spectrum, the square of amplitude of
which decreases according to the 1awf4~i%g*” (see (26)). At dis-

[if m and.np are complex,bhat ;g_iﬁ
tances (®~| , this wave becomes of primary importance(ﬁn the media i

with z = + w0 damping bakes place, the lateral wave then will :

e A
o,

be damped exponentially with the distance.éé@wn:«e&é—nzuaaeweem— E

s s s

5;;;;, 4o)w If this damping is found to be greater than that

of the last wave of the discrete spectrum, the lateral wave then

plays no part at any of the distances).

On decrease of the distance there begin to act other waves
of the discrete spectrum. The m law will bécome‘more complicated
and is given by formula (15) in which o~ <f~> for the different
cases is shown in the drawing, wherein in lieu of r, appears the
non-dimensional distance A . On further decrease of the dis-

tance, when there will prevail, roughly, the condition

AL
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3
(more precisely one ghowld write here Py wherein forthe

various cases 4 LS ;Q; . gee Section 1) the law of ate
v

tenuation agaln acquires & simple form. AL these distances there
are acting a large pumber of waves of the discrete gpectrum, the
gum with respect to which can be replaced by an integral., As 8
presult there are obtained exponential lews of attenuetion, of the

type of the nghree half" law (24)

On further decrease of the distance these laws cease to
hold, since there enter into sction waves of large numbers )& y
which do not satisfy condibions (5), From (21) it is apparent
that in ceses I and II the: largest still gignificant f(_is equal

in order of magnitude tO}Lﬁvm{f\fl~4 while in the case TIT it is

/! 4
" Mo & .
o Siad cv!, P — k

Thereafter, taking into account also (20), the condition

(5) can be writtens

Tamaﬂmwjﬂ

o
2

A,
- (4 4\ L

(49)
and an analogous to (43) condition for case IT. These conditions
ae thé\%Pei that determine the Llower limit of distances, ab which
hold the above-derived average laws of attenuation. It is re-
quired that distance T be sufficiently large in comparison with
the thickness of the stratum h. At shorter distances the average

£ield depends nob only on T but also on the positions of the source

of radiation and receivedwith respect to the poundaries of the

e ——————EAS R s SRR
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V, N, Kessenikh

You mentioned the absolute identity of the formal aspects
in acoustic and electromagnetic eases. Apparently in the electro-
magnetic case you had in mind only the vertical dipole, since for
a horizontal dipole there is obbained not one, but two components

of Hertz vector.
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L. M. Brekhovskikh

LU et e e )

Yes, I agree. However, the general method, which is being

presented here, can be traensferred without any difficulties to

the case of a horizontal dipole.
v, N. Kessenikh

You have not estimated how the pileture of lateral waves
formation will be gltered in cases of a horizontal dipole? You

remember the work nede known as early as 1912, relative to the

rise of directionality in radiation of a horizontal dipole over &

semi-conductor surface?

L. M Brekhovskikh

Tf the surface is appreciably conductive, the lateral wave

is no longer of substantial importance, since it rapidly under-
goes damping with distance. Hence in the classic instance of

propagation of waves over & semi-conductor surface, the lateral
wave can be disregarded. In such a case the lateral wave will
be Sommerfeld integrai Qp. The lateral wave can be found to be
important if consideration is given to inhomogeneity of the at-

mosphere.

T have not computed the lateral wave for the horizontal

case. One may deem, however, that the general properties of the-

lateral wave in this case will be the same as for the vertical di-

pole. Some change may occur only in the function characﬁerizing

the dependence of wave amplitude on the vertical coordinate.
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solved?

L. M. J?_;_-g}hovskikh

ROV 2o

1 have nob worked on the problem of non—parallel strata.
1 believe that the method 1 have proposed will be of use here

also.
N, V. 7volLinskiy

The geparation into aiscrete and conbinuous gpectra arrived
at in your paper appears from & physical standpoint to be @ most
enbicing resulb. put I feel somewhat dissatisfied with the analy=-
sis presented, which to me sppears to be»eesentielly incomplete.
Specifically, that integral representetion which you have written,
will only then become clear, and may be referred to as @ presen-
tation of the solution, when you know the singularities of the func-
fion within the integrabion signe. Lacking thig, it 18 not oﬁly
impossible to move the integration contour, Put 8lso one may not
even write such an integral. Meanwhile ¥OU have omitted the gtudy
of poles of the genominator. Tn your papeT you menbion very
poiefly, put ewen in the thesesS, which I was in a posibion yo studys

the subject is taken*&p.with scarcely more detalls, and study of

the poles there 8180 is incomplete. ‘They contain 2 pumber of a8~

sumpbions, not entirely appafentj-aad possibly nob consoneni._mSo

-

that on final account, We still do not know where the poles are

1ocated and how many there are. 1f o series 1p written on thab

pagis it is not known whetheTr it converges OF not.

T

a7 -
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Even though the results possess, perhaps, some physiloal
plausibility in general, stlll their pleusibility is doubtful for
all falues of parameters and basic functlons included in the pre-
sentation of the problem. Consequently the reglon of applicabllity
of your analysis remains uncertain. " In my opinion a postulate

should still be advanced, with respect to parameters and initial

functions, on the basis of which it can be asserted that all this

is actually so.

Tnsufficlency of analysis, it appears to me, affects two
problems: first, the study of the denominator poles —- in prob-
lems of this kind this is a fundamental, very laborious, but ab-
solutely indispensible process and I fail to see how it can be
skipped over; secondly, estimation of the integral by the method
of anticline point, & problem which to me is more readily tackled.
But even insofar as the last problem is concerned, it also has
not been completed. You assume that at the anticline point the
first derivative becomes zero. But it can happen that there the
second derivativé also becomes zero. Such a possibility is not
excluded., True, if the problem comprises several parameters such

an eventuality is somewhat fortuitous. Stil1l it should be studied.

Therefore I believe that although the results are physically
most interesting and attractive, they are not substantiated. You
said you were not particularly jnterested in generality. It seems

to me that quite to the contrary: you do notb want to consider

a concrete medium but consider an arbitrary stratified-inhomogeneous
medium, It seems to me that under these conditions even with con-

cretely assigned properties, performance of this study will be un-
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bellevably diffieult.

The problem could be presented in a different plane (I
refer to our informal conversations) -~ that this is not a task
of physiclsts but one of mathematiclens. But I think that any
physicist utilizing a mathematical method must carry the task
to conclusion, the same as any methematician working on problems
capable of application must pursue the task to a stage at which
the physical conclusions are clear. Otherwise there is left a

feeling of uncertainty, of incompleteness.
A. N, Tikhonov

Solution of problems of mathematical physics is effected
in this manner: the first stage is the analytical presentation
of a solution, the second stage is interpretation of the analy-

tical expression obtained.

The analytical presentation of the éolution has been ob-
tained by you using the method of plane waves. The problem, how-
ever, displays cylindrical symmetry. Hence one may separate
Bessel function, and write the solution forthwith even in a some-
what general form. The method of plane waves appears to me to

have no advantages in the solution of the proposed problem.

So mueh concerning the analytical for of the solubion.

In interpreting the solution, of very great interest is the
fact that by the strata of greatest conductivity is transmitted

the major portion of energy, and transmission of energy over great

distances is attained. In your study of the solution you have segre-
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gated two partss a part corresponding to the discrete spectrum,
and a lateral wave representing the solution at a very greab dis-

tance, when the discrete spectrum is eliminated.

0f greatest interest 1s the problem of passage of process
of one kind into another: in what systems, at what distances the
greatest portion of energy is connected with the discrete spec—
trum, and begiﬁning at what distance this effect is gliminated and

the solution is determined by the lateral wave.

Representation of the lateral wave in the form given by

you is very interesting, but in addition to this from the stand-

point of solution interpretation it is interesting and important

£o know from what distance on is the solution determined by the

lateral wave.

V. N. Kessenikh

AL A

First of all I wish to say a fow words concerning the re-
proof directed at the Speaker relative to inadequate study of the
function within the sign of integration at the region of the sum-

mit point.

Since this work is of primary interest to those concerned
with problems relating to the field of electromagnetic and sound
waves propagation, the solution is quite obvious to this group of
people., Behavior of the function within the integration sign at
the summit point region is in fact such as to render the summit

method applicable to the fullest extent., This summit point is

of the same kind as that of the expression within the integration

sign, of, let us say, Hankel function.

s e AN Sy i Sl e
" Declassified in Part - Sanitized Copy Approved for Release 2012/04/26 - CIA-RDP82-00039R000200120005.2



" Declassified

Declassified in Pa
Sanitized C
Approved for Release 2012/04/26 : CIA. DP 00039R
: 000200120005

The second remark 18 concerned with further development of
regearches by L. M. Brekhovakikh. 7 pelieve that confiixﬁng one-
aelf merely to mentioning the pxistence of an analogy between the
gtudied instance of a vertical dipole and that of & horizontal
dipole or of a dipole of arbitrary airection, is not sufficient.
Thig is known from the theory of wave prépagation, 18 known if
for no other reason than that the theory of aiffractional propa-
gation of radio waves eround a sphere utilizes up Lo now a very
imperfect substitute for & horizontal electrical dipole, namely &

vertical magnetic dipole.

Transition to & horizontal dipole involves loss of sym-
metry, end transition to the unsymmetrical cage requires utiliza~

tion of a considerably more complex mathematical apparabus.

Tn the case of plane-stratified medium, this transition has
been effected only in part -- for the plane geparation surface of
two media. The plane case is of greab practical value in connec-
tion, let us s&y, the running wave antenna of Shehukin and & num-

per of other instances. In the plane-stratified medium this prob-

1em has not been investigated, although in many instances atmos-

pheric waveguides wbilimation is important alos in the case of
horizontal polarization. Tt would be most desirable and interes-
ting to conbinue studies in the direction of investigation of in-

stances of horizontal polarization
L, M. Brekhovskikh

T agree that & solution in the form of quadratures can be

obtained also without the use of plane Waves. Thig, however, can
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be done only in those cases when the wave equation is solved in
known functions. My solution ie formulated by means of the coef~
ficlent of reflection of plene waves bt the lower end upper boun-
deries, In & whole gerias of cases solution of the wave equation
cannot be determined. On such an instance, using known methods, no

solution can be obtained for the field of a spherical wave. On

the other hand my solution containing the vunctions Vq and Vs

will be sultable for such caeses. The results previously given
make it possible, for example, o determine the values of the
fields in those instances when dependence of parameters of the

medium on the coordinate z is given graphically.

i accept the censures concerning the insufficient complete-
ness of discrete spectrum study. This study constitutes & diffi-
cult mathematical problem, but of course it must be solved to

complete the task.

To write an integral expression for psi is possible even
without'a study of the discrete spectrum, since convergence of the
integrals has been demonstrated, In this respect I do not a-
gree with N. V. Zvolinskiy. I have made a study, moreover, of the
pole behavior in remote regions and regions close to origin of the
coordinates, as well a8 evaluated the distance at which the lateral

wave begins to prevail over the discrete spectrum.

T believe that the results obtained permit to operate with
certainty in concrete instances. Specifically, I have obtained con-
crete characteristics of propagation of the first wave of the dis-
crete spectrum which is propagated over the greatest distances, as

well of some of the succeeding waves. @t seems to me that from a
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